

Institute of High Energy Physics Chinese Academy of Sciences

Higgs self-coupling measurements in LHC

Jin Wang

Institute of High Energy Physics, CAS

Thursday, July 15, 2021

The First Tibet High Energy Physics Forum

Higgs self-coupling and HH production

- Higgs self-coupling could be directly accessed by the SM HH production
 - crucial to understand the EW symmetry breaking mechanism
 - Non-resonant production: rare process of the SM
 - destructive interference

2

- $\sigma(gg \rightarrow HH) \approx 0.1\% * \sigma(gg \rightarrow H)$

- BSM contributions can modify the Higgs boson coupling parameters and modify the HH cross section: define $\kappa_{\lambda} = c_{hhh} = \lambda_{HHH} / \lambda_{HHH}^{SM}$
- BSM resonances Heavy scalar/graviton could also decay to a HH pair

The First Tibet High Energy Physics Forum

HH decays

• HH decay branching ratio fraction

%	bb	WW	ττ	ZZ	үү
bb	33				
ww	25	4.6			
ττ	7.4	2.5	0.39		
ZZ	3.1	1.2	0.34	0.08	
γγ	0.26	0.1	0.03	0.01	-

- bbbb: highest branching fraction, large multijet background
- bbWW, bbττ, bbZZ: smaller BR, exploring lepton final states to reject backgrounds
- $bb\gamma\gamma$: very small BR, clean signal extraction due to the narrow $h \rightarrow \gamma\gamma$ mass peak
- multilepton(WW+ττ+ZZ) and WWγγ: important complementary channels

ATLAS and CMS are exploring all these final states in LHC Run2

The First Tibet High Energy Physics Forum

CMS $HH \rightarrow bbbb$ with Run 2 data

- Recently published results with $HH \rightarrow bbbb$ from CMS (June 2021)
 - measuring both ggF and VBF production of HH
 - reconstruct HH candidate using 4 jets
 - with additional 2 jets for VBF events
 - use dedicated BDTs to separate different signals and backgrounds

 large multijet background estimated from data and fitted simultaneously in multiple signal regions

The First Tibet High Energy Physics Forum

$$\sigma_{ggF+VBF}^{HH} < 3.6 (7.3) \times \sigma_{ggF+VBF}^{HH SM}$$

-2.3 (-5.0) < κ_{λ} < 9.4 (12.0)

$$-0.1~(-0.4) < \kappa_{2V} < 2.2~(2.5)$$

ATLAS $HH \rightarrow bbWW$ with Run2 data

- ATLAS analysis of two b-jets, two leptons and missing transverse energy using 139 fb⁻¹ data
 - Phys. Lett. B 801 (2020) 135145

5

- targeting mainly ggF $HH \rightarrow bbWW$ but also contains $bb\tau\tau$, bbZZ signals
- use multi-class Neural Network(NN) to separate the main signal and backgrounds
 - define discriminant $d_{HH} = \ln(\frac{p_{HH}}{p_{top}} + p_{Zll} + p_{Z\tau\tau})$ with p_i as the probability of events belong to class I in the mult-class NN output

The First Tibet High Energy Physics Forum

CMS $HH \rightarrow bbZZ$ with Run2 data

- ggF $HH \rightarrow bbZZ$ channel with final states of two b-jets and two pairs of opposite-charge leptons (4 μ , 4e, 2 μ 2e): CMS-PAS-HIG-20-004
 - 9 BDTs are trained for each data-taken year and each final state channels to separate signal and backgrounds
 - signal region is defined with $m_{4l} \sim m_H$
 - multi-dimensional binned fit to the BDT distribution in data is performed to extract the signal
 There y Prediction
 There y Prediction
 There y Prediction
 There y Prediction
 There y Prediction

The First Tibet High Energy Physics Forum

Observed (expected) limits at 95% CL:

- $\sigma_{ggF}^{HH} < 30 (37) \times \sigma_{ggF}^{HH SM}$
- $-9 (-10.5) < \kappa_{\lambda} < 14 (15.5)$

CMS $HH \rightarrow bb\gamma\gamma$ with Run2 data

- Targeting both ggF and VBF production of $HH \rightarrow bb\gamma\gamma$ events
 - MVA strategy to optimize signal and background separation
 - BDT to separate ggF or VBF HH from $\gamma(\gamma)$ +jets events
 - optimized category to maximum Higgs self-coupling sensitivity
 - Deep Neural Network (DNN) to separate HH from ttH(γγ) events
 - signal extraction from simultaneous fit of $m_{\gamma\gamma}$ and m_{bb}
- Obs.(exp.) upper limit on HH signal strength 7.7(5.2)×SM

ATLAS $HH \rightarrow bb\gamma\gamma$ with Run2 data

- Targeting mainly ggF production of $HH \rightarrow bb\gamma\gamma$ events but VBF events are also considered as signal
 - two different BDTs are trained for events with high/low 4 body mass $m^*(bb\gamma\gamma)$ to improve BSM sensitivity
 - Fit $m_{\gamma\gamma}$ distribution for signal extraction

8

Upper limit on signal strength: obs.(exp.) = 4.1(5.5)×SM

The First Tibet High Energy Physics Forum

HH combination

- Both ATLAS and CMS have performed HH combination with partial Run2 data
 - 27.5-36.1 fb⁻¹ data for ATLAS, 35.9 fb⁻¹ data for CMS
 - only consider ggF HH production

9

Observed (expected) limits at 95% CL:

- ATLAS: $\sigma^{HH}_{ggF} < 6.9~(10) \times \sigma^{HH~SM}_{ggF}$

- CMS:
$$\sigma_{ggF}^{HH} < 12.8~(22.2) \times \sigma_{ggF}^{HH~SM}$$

- ATLAS: $-5 (-5.8) < \kappa_{\lambda} < 12 (12.0)$
- CMS:-11.8 (-7.1) < κ_{λ} < 18.8 (13.6)

Thursday, July 15, 2021

Higgs self-coupling with single Higgs processes

Higgs self-coupling k_{λ} also affect the single Higgs NLO electroweak \bigcirc corrections

10

15

CMS single Higgs combination; $-3.5(-5.1) < k_{\lambda} < 14.5(13.5)$

Thursday, July 15, 2021 Kλ

95% CL

68% CI

20

κ,

15

3

2Ē

-5

10

σ

14

12

10

8 6

2

-10

-5

HL-LHC projection of HH

- Different channel are studied for HL-LHC with projection from Run-2 analyses
 - ~20% larger cross section, but much more difficult environment
 - summary of channels/methods:

11

	ATLAS	CMS
bbbb	extrapolation	parametric
bbττ	extrapolation	parametric
bbyy	smearing	parametric
bbVV (→lvlv)		parametric
bbZZ (→4l)		parametric

Combined HH results in HL-LHC

• Expected significance (SM) with and without systematics at HL-LHC

	Statistical-only		Statistical + Systemati		
	ATLAS	CMS	ATLAS	CMS	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
$HH ightarrow b \overline{b} au au$	2.5	1.6	2.1	1.4	
$HH ightarrow b \overline{b} \gamma \gamma$	2.1	1.8	2.0	1.8	
$HH \rightarrow b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Combined		Combined		
	4.5	5		4.0	

arxiv:1902.00134

- 4σ expected with ATLAS+CMS!

• Measurement of μ (SM signal injected):

- $\sim 25\%$ (30%) without (with) systematics
- $\mu = 0$ (no SM HH signal) excluded at 95% CL

• Measurement of κ_{λ} :

12

- 68% CI of 50%
- 2nd minimum excluded at 99.4% CL thanks to the m_{HH} shape information

The First Tibet High Energy Physics Forum

Summary

- Both ATLAS and CMS are finalizing a range of HH measurements that probe the Higgs self-coupling with full Run2 data
 - some of the main channels have their results with full Run2 datasets
 bbbb,bbWW, *bbZZ* and *bbγγ* channels
 - the most stringent limits to k_{λ} at 95% CL. to date correspond to:
 - $-1.5 (-2.4) < k_{\lambda} < 6.7 (7.7)$ from ATLAS $bb\gamma\gamma$ channel
 - limits would be improved by the combination of different HH channels and introducing constraints from single Higgs production
 - stay tuned for the full Run2 results !
- With HL-LHC the Higgs self-coupling 68% C.L intervals could be constrained at 50% level
 - exclude $k_{\lambda} = 0$ at 95% C.L.

13

expect the observation of the HH SM production

The First Tibet High Energy Physics Forum

Back Up

The First Tibet High Energy Physics Forum

General HH analysis strategy

15

- Analysis strategy
 - develop MVA method to reject background
 - explore m_{HH} and SM Higgs spectrum

The First Tibet High Energy Physics Forum

CMS-PAS-FTR-18-019

Thursday, July 15, 2021

Indirect k_{λ} probes with single Higgs process

- Single-Higgs production: Higgs self-interaction only via one-loop corrections (ie two loop-level for ggF)
- κ_{λ} -dependent corrections to the tree-level cross-sections, depends on:
 - − production mode \rightarrow mainly ttH, tH, VH
 - kinematics properties of the event

16

The First Tibet High Energy Physics Forum

Implications of the HH measurements

- Flavour physics: 2HDM model where flavor symmetry broken at the electroweak scale
 - $\kappa_{f}^{h} = enhancement of Higgs$ Yukawa couplings to fermions

 Enhancement of the di-Higgs production + change of m_{HH} shape with interference

• EWK phase transition:

 1st order possible with additional bosons interacting with the Higgs

The First Tibet High Energy Physics Forum

Indirect k_{λ} probes with single Higgs process

 Global fits of single Higgs and double Higgs results

18

• vary only k_{λ} (dash line)

[0.3, 1.8]

[-0.3, 3.3]

-1.5 , 7.7]

-2.7,8.7

[-1.1, 8.8]

_2.5 , 10.2]

[0.5, 1.6]

[0.1,2.3]

[-1.9, 5.3]

[-4.1, 14.

[-0.1, 2.3]

[–1.1 , 3.8] **[–2. , 3.9]**

-5.,7.]

-5

-10

[0.2,2.]∪[6.3,7.2] [-0.4,8.2] [-0.5,5.8]

• EFT framework (solid line)

X. X.

0

Kλ

X. M.

W),

5

The First Tibet High Energy Physics Forum

**

10

15

Lepton collider vs hadron collider

- Future lepton collider like CEPC will be practically free of systematic uncertainties
 - an order of magnitude or more improvement in precision in most Higgs measurements and many electroweak observables
 - search for potential unknow decay modes that are impractical at hadron colliders

The First Tibet High Energy Physics Forum

19