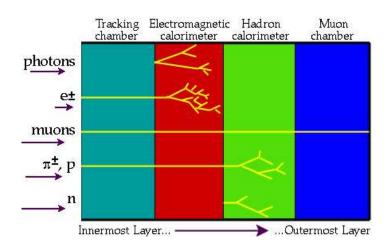
From Higgs Hunters to Cosmos Hunters

Turn Your Phone Into A Particle Detector

Jianrong Deng

NAOC, CAS

1st Tibet HEP Forum July 15th, 2021

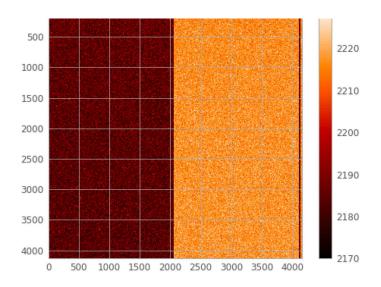

From Higgs Hunters to Cosmos Hunters

- Turn Your Camera/Phone Into A Particle Detector
- Ultra High Energy Cosmic Rays, Cosmic Neutrinos
- Cosmic Neutrinos from the BIG BANG (Relic Neutrinos)
- "DARE THE MIGHTY THING": Cosmic Neutrino Telescope
- Into the Dark Forest:
 - Dark Matter?
 - Dark Energy??

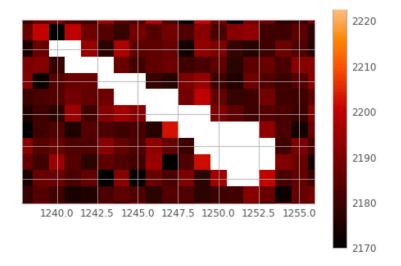
Turn Your Camera / Phone Into A Particle Detector

- Pixel Detectors @ Colliders
- Digital Cameras @ Telescopes
- Smart Phones @ CRAYFIS
- Science Outreach: Desktop DIY

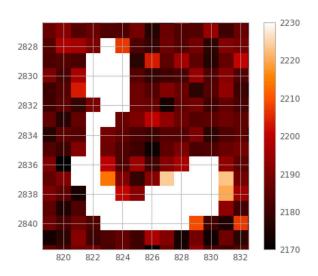
Particle Detection

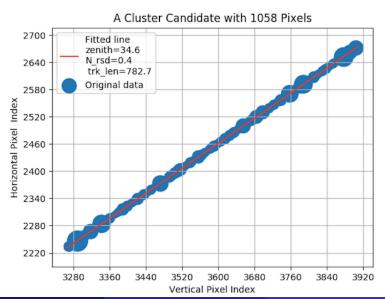

Take A Photo of Particles Using A Digital Camera

- CCD Arrays @ Telescopes (LAMOST)
- Pixel Sensors on A CCD Camera

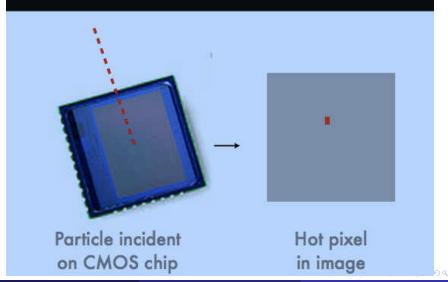

The LAMOST Charge-Coupled Device (CCD)

- 32 CCDs
 - 16 for Blue band
 - 16 for Red band
 - #1-8 on the seventh floor
 - #9-16 on the sixth floor
- Cooling:
 - Liquid Nitrogen cooling
 - at −130⁰ Celsius
 - 4K by 4K pixels
 - 12 x 12 micron pixel size


CCD Raw Data

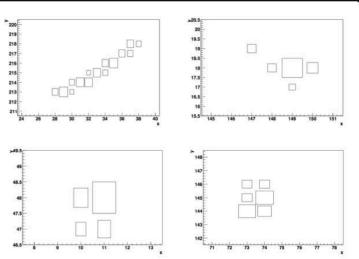

CCD Raw Data: Muon Candidate

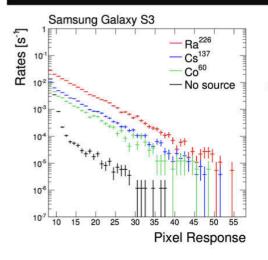
CCD Raw Data: EGamma Candidate


Cosmic Rays Recorded on CCD Camera at LAMOST


CRAYFIS: Turns Your Smartphone Phone Into A Particle Detector

- CRAYFIS: Cosmic RAYs Found In Smartphones
- Web: crayfis.io
- Use Phone's built-in Camera
 - can detect visible light
 - can also detect high energy particles:
 - photons: X rays, gamma rays
 - electrons, muons
- Use Phone's built-in GPS
 - for position information


Particle detector


Some Photos of Cosmic Rays from My HuaWei Pad

Individual hits

Sources

Sources held at fixed distance from phones.

Other devices give qualitatively similar spectra

Cosmic RAYs Found In Smartphones Collaboration

Whiteson Shimmin

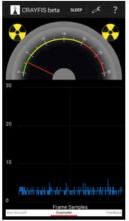
Shimmin Strong Brodie Goddard

Porter Sandy

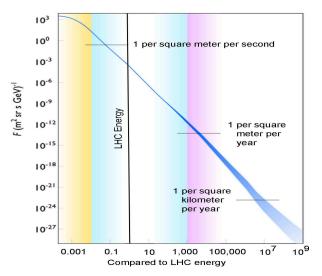
Cranmer

Ustyuzhanin +2 masters st.

Mulhearn Burns Buonacarsi


Deng

Android App



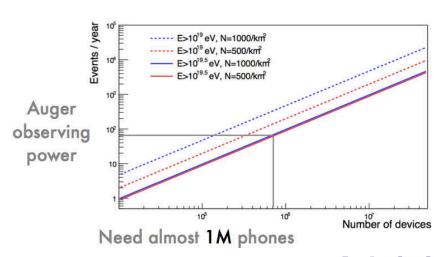
Colliders@TeV

- Tevatron @ 2 TeV
- LHC @ 14 TeV
- Next Generation Colliders: O(100) TeV

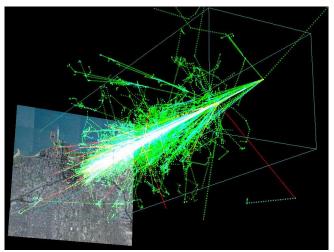
Listen to Nature's Messengers: Cosmic Rays

- Our Universe is a high energy accelerator, and it is FREE!
- Figure: http://en.wikipedia.org/wiki/Cosmic_ray

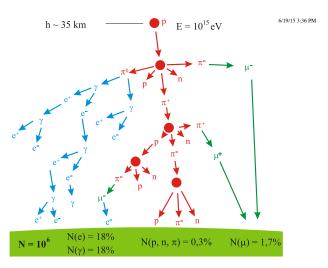
Listen to Nature's Messengers: Cosmic Rays


- Cosmic Rays:
 - Energetic charged particles
 - originating in outer space
 - Most primary CR:
 - protons, atomic nuclei, or electrons
 - Can have extremely high energy:
 - 10¹⁸ eV and above
 - Energy spectrum of primary CRs known to extend beyond 10²⁰ eV
 - Compare to the world's largest particle collider LHC:
 - Designed goal: 14 TeV = 14 * 10¹² eV
- When Cosmic Rays enter earth atmosphere:
 - collider with oxygen or nitrogen
 - produce a cascade of light secondary particles:
 - photons, electrons, muons, neutrinos...

Cosmic RAYs Found In Smartphones


- Event Rate for Ultra High Energy Cosmic Rays:
 - @ 10²⁰ eV:
 - 1 per square kilometers per century
- Can't wait for a century:
 - need as many detectors to collect data as possible

How many do we need?



Cosmic Rays: Extensive Air Shower

https://en.wikipedia.org/wiki/Air_shower_%28physics%29

Cosmic Rays: Extensive Air Shower

https://en.wikipedia.org/wiki/Air_shower_%28physics%29

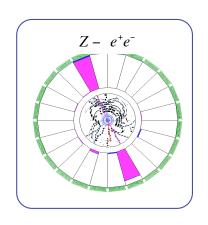
Outline: Particle Detector In Your Pocket

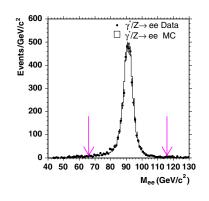
- CRAYFIS: Cosmic RAYs Found In Smartphones
- Dosimeter
- Ultra High Energy Cosmic Rays and Cosmic Neutrinos
- Cosmic Neutrino Background!
- Connection to The First Second After the Big Bang

Cosmic Microwave Background

CMB:

- a microwave excess associated with a thermal radiation field with a temperature of about -454°F (3K)
- Observed in 1965, the most ancient radiation in the universe and providing evidence for the Big Bang model
- Photons take time to reach Earth from distant parts of Universe
- Whenever we look outward in space, we are also looking back in time
- As the universe cooled and expanded, there was an increase in wavelengths of high-energy photons
 - such as in the gamma-ray and X-ray portion of the Electromagnetic Spectrum
 - and a shifting to lower-energy microwaves

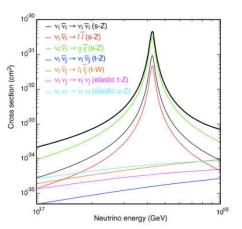



Relic Neutrinos

CMB vs Cosmic Neutrino Background (CNB), or so-called relic neutrinos (RN)

- CMB at 2.725 K
- RN at 1.945 K
 - ullet Possibility to reveal the Existence of RN by Z^0 Resonance
 - Relic Neutrino + Ultra High Energy Neutrino -> Z⁰
 - Resonant Cross-section is large
 - Dips in the Spectrum of UHEN at Resonance Energies
 - Let's Map out Our Universe with Neutrinos!

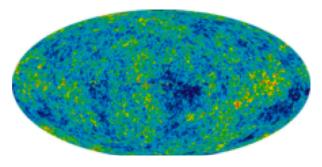
Z(ee) Boson Event Selection (from My CDF Thesis)



- Two high E_T electrons
 - E_T > 20 GeV

ullet 66 < M_{ee} < 116 GeV/ c^2

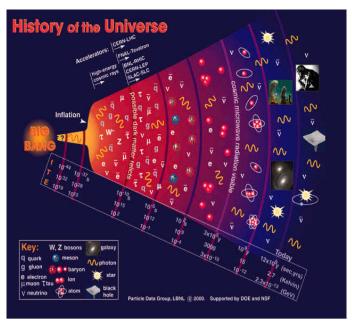
Neutrino Cross Section


- Total neutrino annihilation cross section
- relic neutrino mass of $m_{\nu}=10^{-5}$ eV and zero redshift

Perspective: Onto the Golden Age of High Energy Neutrino Astrophysics

- A Possibility to Establish the Existence of Relic Neutrinos from the Big Bang
 - Using Ultra High Energy Neutrino Absorption Spectra
 - Very Long Term Goal...
- See A Bright Future:
 - A Golden Age of Neutrino Astrophysics is Coming!
 - IceCube's Publication on the Observation of PeV (10¹⁵ eV) Neutrinos
 - Marks the Beginning of High Energy Neutrino Astrophysics

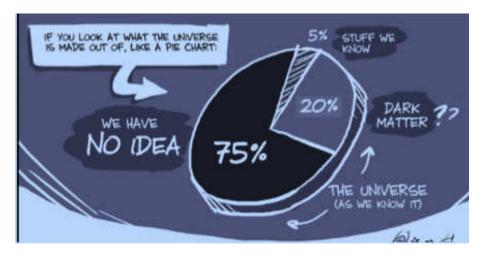
GOAL: Neutrino Sky Map


Let's mapping out our Universe with Neutrinos!

Cosmic Microwave Background Radiation Map

Outline: Particle Detector In Your Pocket

- CRAYFIS: Cosmic RAYs Found In Smartphones
 - muon
 - photon
 - alpha ...
- Not Just Smartphones:
 - CCD Cameras
 - LAMOST
 - Dark Energy Survey
 - ...
- Ultra High Energy Cosmic Rays and Cosmic Neutrinos
 - Extend Array Sensitive Region
- Cosmic Neutrino Background!
- Connection to The First Second After the Big Bang



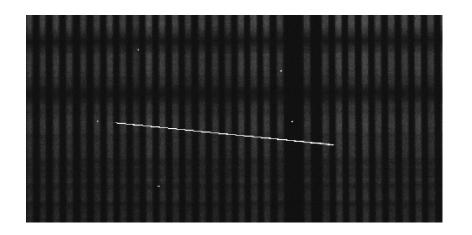
Connection of LHC and UHECR to the Big Bang

- The Energy at Colliders and of Ultra High Energy Cosmic Rays:
 - Recreate the Condition (Energy) as they were during the Big Bang:
 - at t < 0.1 ns $(10^{-10}$ s) after the Big Bang:
 - Probe the earliest tick on the cosmic clock
 - Try to understand what happened in that first second

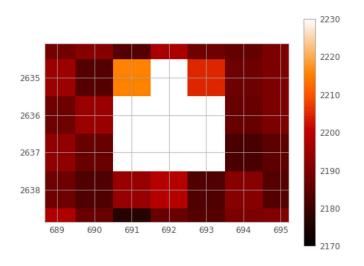
time(s)	E (GeV)	T (Kelvin)
10^{-37} s after Big Bang	10 ¹⁵	10 ²⁸
10^{-10} s after Big Bang	10 ²	10 ¹⁵
of UHECR/Neutrinos	10 ¹¹	10 ²⁴
@LHC	10 ⁴	10 ¹⁷

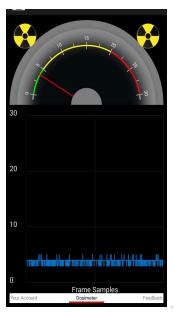
We understand only a few percent of the Universe so far...

...

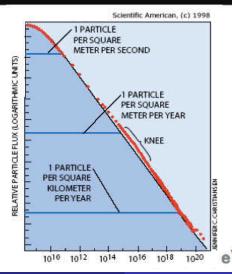

EXTRAs

The LAMOST Charge-Coupled Device (CCD)


- 32 CCDs
 - 16 for Blue band
 - 16 for Red band
 - #1-8 on the seventh floor
 - #9-16 on the sixth floor
- Cooling:
 - Liquid Nitrogen cooling
 - at −130⁰ Celsius
- e2v 203-82
 - back illuminated CCD
 - 4K by 4K pixels
 - 12 x 12 micron pixel size
 - flatness better than 15 micron with 100% active area
 - support 4 output readout modes?
 - LAMOST uses two of the four amplifiers to generate output images

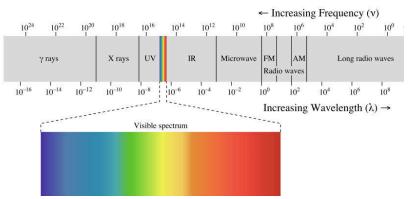

Cosmic Rays Recorded on CCD Camera at LAMOST

CCD Raw Data: EGamma Candidate



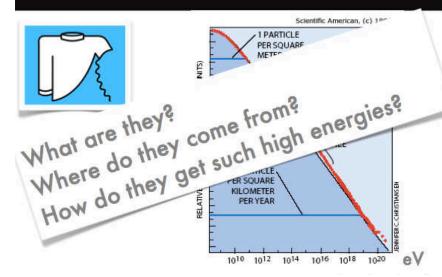
Turn Your Smartphone Into A Particle Detector

A loose thread



Nobel Discoveries on Cosmic Rays and Neutrinos

- 1936: Vitor Hess
 - Observed rising radiation at rising altitudes
 - Concluded in 1912
 - a radiation of very great penetrating power
 - enters our atmosphere from above
- 2002: R. Davis and M. Koshiba
 - pioneering contributions to astrophysics
 - in particular for the detection of cosmic neutrinos
- 2015: Takaaki Kajita and Arthur B. McDonald
 - Neutrino Oscillation

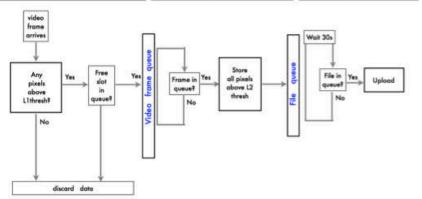

Celebrate the International Year of Light

• web: http://www.light2015.org/Home.html

• Figure: http://en.wikipedia.org/wiki/Electromagnetic_radiation

A loose thread

Smartphones



Software

Video acquire thread

Frame process thread Data upload thread

Challenge: big data!

50k devices 500kb/sec 250 simul. connections \$1000/month

1M devices 10Mb/sec 5k simul. connections \$20k/month

DAQ

Five Simple Rules

It was the work of generations of searchers who took five simple rules to heart.

- 1.Question authority.
- 2.No idea is true just because someone says so, including me.
- 3.Think for yourself.
- 4.Question yourself.
- 5.Don't believe anything just because you want to.
- Cosmos: A Space Time Odyssey(2014)

One Two Three Infinity