

Neutrinoless Double Beta Decay

Liang Yang University of California San Diego CCEPP summer school Lecture II, 8/25/2013

Lecture Outlines

Lecture 1:

- Brief review of theory of neutrino mass
- Majorana vs. Dirac neutrinos
- Experimental ideas to test Majorana neutrinos
- Neutrinoless double beta decay experiment overview
- Experimental sensitivity and background sources

Lecture 2:

- Tracking detectors
- Bolometers
- Semiconductor
- Liquid Scintillators

• TPCs

Double Beta Decay

Observable if single beta decay is forbidden -10 8 53 I ¹³⁶₅₉Pr A=136 ¹³⁶58Ce ¹³⁶57 La $\frac{^{136}_{54} Xe}{^{55}} cs \beta^{-1}$ 3 - 2 ¹³⁶₅₆Ba (MeV)

Observation of $0\nu\beta\beta$:

- Majorana neutrino
- Neutrino mass scale
- Lepton number violation

Two neutrino double beta decay

Neutrinoless double beta decay

Detecting $\mathbf{0}\nu\beta\beta$

Summed electron energy in units of the kinematic endpoint (Q)

But needs:

- Good Energy resolution
- Excellent background discrimination against gammas and alphas
- Low radioactive contamination for detector construction

0νββ Historical Progress

• Current generation experiments at 100 kg scale, has started to probe the inverted mass hierarchy region.

• Next generation tonne scale experiment aims to improve the neutrino mass sensitivity by another factor of 10.

Four Pillars of Modern $0\nu\beta\beta$ Experiments

1) Isotopic enrichment of the source material (that is generally also the detector)

2) Underground location to shield cosmic-ray induced background

3) Ultra-low radioactive contamination for detector construction components

4) New detector techniques for background discrimination

(This improves for large detectors)

6

$0\nu\beta\beta$ experiments

- Tracking detectors (superNEMO)
- Bolometers (CUORE, CUPID, AMoRE, CANDLE IV)
- Semiconductor (LEGEND)
- Liquid Scintillators (KamLAND2-Zen, SNO+, Theia)
- TPCs (NEXT, PandaX, nEXO)

monolithic

Detection Channels

Light (Photon)

Background sources for $0\nu\beta\beta$ experiments

- α background
 - Short range (a few MeV), mostly surface events
- β background
 - Can be both external and internal, short range
- γ background
 - mostly external, difficult to shield
- n background
 - Can activate material and (n, $\alpha)$ reaction
- Cosmic muon
 - Cosmogenic background
- Neutrino background

Material Selection and Qualification

Experiments undergo massive effort on material radioactive qualification using:

- Neutron activation analysis
- Low background γ -ray spectroscopy
- α-counting
- Radon counting
- High sensitivity GD-MS and ICP-MS

Background impact of each component is evaluated by MC simulation using the measured radioactive.

Background Suppression Techniques

- Energy measurements
- Event multiplicity/ topology
- Event location (surface/bulk, distance to wall)
- Particle identification: separating α from e⁻ / γ
- Time coincident information and veto systems
- Tagging the daughter ions

Modern experiments uses a combination of the techniques.

Tracking Detector: NEMO-3 (2003 – 2011)

NEMO-3 detector

An ¹⁰⁰Mo $2\nu\beta\beta$ event

- Double beta decay isotope are in the form of thin foils ~ 60mg/cm².
- Decay electrons are tracked with Geiger mode drift tubes in modest magnetic field.
- The energy of the electrons are measured by plastic scintillators coupled to PMTs.

NEMO-3: $2\nu\beta\beta$ Results

¹⁰⁰Mo $T_{1/2}^{2\nu\beta\beta}$:[7.16 ± 0.01 (stat) ± 0.54 (sys)] 10¹⁸ y

- Measured 2vββ half life for ¹⁰⁰Mo, ⁸²Se, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd, ⁹⁶Zr and ⁴⁸Ca.
- Ratio of Signal/Background > 70, most halflife measurements are systematic limited
- Beautiful spectra of single electron energy and angular distribution between two decay electrons demonstrate the power of the tracking method.

NEMO-3: $0\nu\beta\beta$ Result (¹⁰⁰Mo)

Exposure: 34.3 kg yrs $T_{1/2}(\beta\beta0\nu) > 1.1 \times 10^{24}$ yrs (90%C.L.) $m_{\beta\beta} < 0.33 - 0.62$ meV Physical Review D 92(2015) 072011

NEMO-3 → SuperNEMO

NEMO-3	Super-NEMO
1 cylindrical module	> 20 planar modules
7 kg ¹⁰⁰ Mo	100 kg 82 Se (or 150 Nd, or 48 Ca) (longer $2\nu\beta\beta$ halflife)
8% FWHM @ 3MeV	4% FWHM @ 3MeV
~ 100 μBq/kg (²⁰⁸ Tl) < 300 μBq/kg (²¹⁴ Bi) ~ 5.0 mBq/m ³ (²²² Rn)	< 2 µBq/kg (²⁰⁸ TI) < 10 µBq/kg (²¹⁴ Bi) < 0.15 mBq/m ³ (²²² Rn)
$T_{1/2}^{0\nu} > 10^{24} \text{ yrs}$	$T_{1/2}^{0\nu} > 10^{26} \text{ yrs}$

SuperNEMO Demonstrator assembled in November 2018

Tracking detector

Strengths

- Source decoupled from detector and can use any solid isotope
- Particle ID and background rejection with track and timing information
- Angular distribution and individual β energy can be used to study $\beta\beta$ mechanism

Weaknesses

- Poor energy resolution
- High cost in scaling up to large isotope mass

Cryogenic Bolometer: ¹³⁰Te

- Measure total energy deposited in the crystal.
- Techniques applicable to many isotopes. Te has the highest natural abundance.
- High energy resolution, 7-9 keV @ 2530keV.
- No information about the particle ID, external γ and surface degraded α are major background concerns.

- 19 tower (13 floors per tower), 988 bolometers, ~ 206 kg ¹³⁰Te
- "Coldest cubic meter in the known Universe"

CUORE Exposure Accumulation

CUORE: 0vββ Result (2021)

Base cut: removing noise period AC: anticoincidence cut PSD: pulse shape discrimination cut

arXiv:2104.06906v1

CUORE background in the ROI

~ 90% of the background in ROI is due to degraded alpha interactions

CUORE: 0vββ Result (2021)

ullet

T_{1/2} > 2.2 X 10²⁵ yr

 $m_{\beta\beta} < (90 - 305) \text{ meV}$

- Background index: (1.49 ± 0.04) x 10⁻² cnts/(keV kg yr)
- Characteristic FWHM E at $Q_{\beta\beta}$: 7.0 ± 0.3 keV

arXiv:2104.06906v1

CUPID: CUORE Upgrade with Particle Identification

Scintillating Bolometer (Heat and Light)

CUPID: CUORE Upgrade with Particle Identification

Li₂¹⁰⁰MoO₄ crystal selected in PCDR

CUPID-Mo set new limit for $0\nu\beta\beta$ ¹⁰⁰Mo (1.17 kg yr exposure)

Phys. Rev. Lett. 126, 181802 (2021)

T_{1/2} > 1.5 X 10²⁴ y (90% CI)

CUPID: CUORE Upgrade with Particle Identification

- Pre-Conceptual Design: 250 kg of ¹⁰⁰Mo in $Li_2^{100}MoO_4$ scintillating crystals, enriched to > 95%
- $0\nu\beta\beta$ sensitivity $t_{1/2}^{\sim} 10^{27} \text{ y} \rightarrow m_{\beta\beta} 12\text{-}20 \text{ meV}$
- CUPID1-ton will use 1 ton of isotope mass in larger crystals with lower background
- In case of discovery, can explore multiple targets: TeO₂ ZnSe Li₂MoO₄ CdWO₄

AMoRE-I

 CaF_2 crystal

On-going projects:

• CUPID (Li₂MoO₄)

• AMORE (Li₂MoO₄, CaMoO₄)

Bolometer

Strengths

- Excellent energy resolution
- Scintillation bolometer provides effective way to reject surface alpha background
- Tonne scale detector operation demonstrated by CUORE

Weaknesses

- Complex detector technology and low temperature operation
- Difficult to scale beyond 1 tonne isotope mass

• CANDLES (CaF₂)

Semiconductor Detector: ⁷⁶Ge

Barbeau et al., JACP 09 (2007) 009; Luke et al., IEEE trans. Nucl. Sci. 36, 926 (1989).

*Also called Broad Energy Ge (BEGe) Detector.

- Excellent energy resolution (4keV FWHM at Q value)
- Pulse shape analysis rejects multiple site events within a single crystal.
- P-type point contact crystal has superior single vs. multi-site rejection capability.
- Modest Q value (2039 keV), cosmogenic activation of Ge and Cu cryostat

$0\nu\beta\beta$ Discovery Claim

Publication by part of the Heidelberg-Moscow Collaboration, often referred to as the Klapdor's (or KKDC) claim.

$0\nu\beta\beta$ Discovery Claim – 2004

HV. Klapdor-Kleingrothaus, et. al, Nucl. Instrum, and Meth, A 522 (2004) 371-406

Fit model: 6 Gaussian + linear background

Four lines at 2010, 2016, 2022 and 2053 are consistent with γ from ^{214}Bi

 ^{214}Bi intensity from fit is 2 – 2.5 σ larger than MC prediction.

An unknown line at 2030, electron conversion of ²¹⁴Bi 2118 keV line?

Total exposure: 71.7 kg•yr ⁷⁶Ge Fit intensity @ $Q_{\beta\beta}$ = 28.75 ± 6.86 Authors claim significance of 4.2 σ . $T_{1/2}^{0v} = 1.19_{-0.23}^{+0.37} \times 10^{25} \text{ yr}$

$0\nu\beta\beta$ Discovery Claim (PSA) – 2006

Spectrum near ROI, after pulse shape analysis

A special pulse shape analysis (PSA) is applied to the data which selects only $\beta\beta$ like events.

Background in ROI dropped from 0.17 cnts/(keV kg yr) to 0.015 cnts/(keV kg yr)

PSA efficiency not quoted in the paper, but a value of 100% is used.

Fit intensity @ $Q_{\beta\beta}$ = 11.32 ± 1.75 Authors claim significance of 6.5 σ . $T_{1/2}^{0\nu}$ = 2.23_{-0.31}^{+0.44} x 10²⁵ yr.

Mod. Ge Exps: MAJORANA and GERDA

- ⁷⁶Ge experiments can check the Klapdor claim in a model independent way.
- More than ten times lower background.
- Superior detector technology, enriched BEGe, (MAJORANA and GERDA Phase II) GERDA

- Use electroformed high purity Cu as shielding, Cu/Pd passive outer shielding
- 4π plastic scintillator veto.
- DEMONSTRATOR: 30 kg enrGe, 10 kg natGe

- Operate 'bare' Ge crystal in liquid Ar
- Liquid Ar can be used as active veto
- Water Cherenkov μ veto
- Phase I: ~ 18 kg, Phase II: + 20kg

Very different background reduction strategy.

MAJORANA

GERDA Phase-II Results

- 103.8 kg yr exposure
- PSD trained with ²²⁸Th calibration data
- Liquid argon instrumented with WLS fiber and SiPM

GERDA Phase-II Results

- Background index 5.2 x 10⁻⁴ cts/(keV kg yr), energy resolution ~3 keV (FWHM)
- $T_{1/2} > 1.8 \times 10^{26}$ yr at 90% CL

LEGEND-1000

Next generation tonne-scale ⁷⁶Ge $0 \nu \beta \beta$

LEGEND-200:

- 200 kg in existing infrastructure at LNGS
- 14 string array, improved light collection and electronics

LEGEND-1000:

• 4 payloads with up to 300 kg in underground LAr containment

LEGEND Discovery Sensitivity

⁷⁶Ge (92% enr.)

Semiconductor (Ge)

Strengths

- Exquisite energy resolution
- New detector design increases module size to 2-3 kg
- Excellent background rejection with PSD and LAr veto
- Modularity facilitates phased deployment
- Lowest background demonstrated

Weaknesses

- Complex and expensive detector manufacturing process
- Difficult to scale beyond 1 tonne isotope mass

$0\nu\beta\beta$ experiments

- Tracking detectors (superNEMO)
- Bolometers (CUORE, CUPID, AMoRE, CANDLE IV)
- Semiconductor (LEGEND, SELENA)
- Liquid Scintillators (KamLAND-Zen, SNO+, Theia)
- TPCs (NEXT, PandaX, nEXO)

monolithic

Scintillation Detector: KamLAND-Zen

• Experience with large liquid scintillator detectors shows that LS can be made extremely pure.

• Radioactivity from PMTs and vessel can be shielded by LS and confining double beta decay isotopes inside a central volume.

• Solubility: Xe-LS ~ 3 wt%

Water Cherenkov Detector

KamLAND-Zen 400: ¹³⁶Xe Result

Largest backgrounds are on the inner balloon (IB) and from ¹⁰C made in muon spallation. (significant reduction of ^{110m}Ag background from previous searches)

$$\begin{split} &\mathsf{T}_{1/2}(\beta\beta0\nu) > 1.07 \ x \ 10^{26} \ \text{yr} \ (90\% \ \text{C.L.}) \\ &\mathsf{m}_{\beta\beta} < 61 - 165 \ \text{meV} \\ &\mathsf{Exposure:} \ 504 \ \text{kg yr} \end{split}$$

Mini-balloon installation (2018)

KamLAND-Zen 800

Spherical CNN applied to subset of KLZ data

- Significant reduction in mini-balloon background, $2
 u\beta\beta$ dominate in all volume
- Photo coverage 34%, Energy resolution: $7\%/\sqrt{E(MeV)}$
- New electronics to collect all neutron captures
- ¹²C-spallation background reduced with analysis

KamLAND-Zen series

KamLAND-Zen 400 R = 1.54m mini-balloon Xenon 320 ~ 380 kg 2011 ~ 2015

 $T_{1/2}^{0\,\nu\beta\beta}$ > 1.07 x 10²⁶ yr $\langle m_{\beta\beta} \rangle < 61 - 165 \text{ meV}$

<u>Ongoing</u>

25

• Target: $T_{1/2} > 5 \times 10^{26} \text{ yr}$

KamLAND2-Zen

Xenon ~ 1 ton

- x 5 increase in light collection.
- Scintillation balloon film
- Target: $T_{1/2} > 2 \times 10^{27} \text{ yr}$

SNO+

Reuse the SNO detector, replace D_2O with liquid scintillator doped with double beta decay isotope.

Addition of hold-down ropes to counter LS buoyancy

Upgrade electronics for higher data-taking rates

0.5% ^{nat}Te loading by weight ~ 460 p.e. / MeV

SNO+ Scintillator Phase

780 tonnesof LAB + 0.6-0.8g/L PPO (Aug 2021) PPO top-off ongoing

Te loading plant

$Te(OH)_6 \rightleftharpoons Te(OH)_5O^- + H^+$

LAB + PPO (2 g/L) + bis-MSB + Tellurium (0.5%)-ButaneDiol+ DDA 3.9 tonnes of ^{nat}Te - 1330 kg of ¹³⁰Te

> 0.5% Te loading 3 years

 $T_{1/2} > 2 \times 10^{26}$ yrs (90% CL)

Sensitivity increase linearly with increased loading

Loaded Liquid Scintillator (Xe, Te)

Strengths

- Scalability to multiple tonnes possible
- Well-understand detector technology and backgrounds
- Relatively low cost and ease of operation

Weaknesses

- Low energy resolution
- Difficult to do particle ID
- solar v, and cosmogenic spallation backgrounds

Time Projection Chamber (TPC): NEXT

• Neutrino Experiment with a Xenon TPC (NEXT) is a high pressure (10 bar) gas ¹³⁶Xe experiment

- Energy resolution < 1% FWHM
- High gamma background rejection (~10⁶) using event topology.

NEXT-100

NEXT-Tonne

- Technology demonstrator at 100 kg scale
- Expected sensitivity ~ 10 yr
- Background index 4×10⁻⁴ counts/keV/kg/yr.
- Construction planned for 2021

L. Arazi, Neutrino Telescope 2021

- 1000 kg enriched Xe
- Tracking + energy by radiopure SiPMs
- Low-diffusion gas mixture (e.g., Xe/He 85/15)
- Expected sensitivity at 3 tonne-yr: $T_{1/2}^{0\nu} \sim 1 \times 10^{27}$ y

PandaX-III: high pressure gaseous TPC for $0\nu\beta\beta$ of ¹³⁶Xe

- TPC: 100 kg scale high pressure TPC at 10 bar operating pressure
- Charge only readout with Micromegas for a spatial resolution of mm
- Tracking capability for signal-background discrimination
 - Detailed topological analysis with simulation data (JPG, 47, 045108 (2020))
 - Kalman-filtered based track reconstruction (JHEP, 2021, 106 (2021))

Kapton-based low-bkg front end electronics

Use Liquid Xenon Time Projection Chambers (TPC) to Search for 0vββ Decay

- Xe is used both as the source and detection medium.
- Simultaneous collection of both ionization and scintillation signals.
- Full 3-D reconstruction of all energy depositions in LXe.
- Monolithic detector structure, excellent background rejection capabilities.

Example of TPC schematics (EXO-200)

EXO-200 is a LXe detector with ~110 kg active volume, operated from 2011-2018. It has demonstrated key performance parameters for $0\nu\beta\beta$ search, and has set a lower limit on the $0\nu\beta\beta$ half-life at 3.5×10^{25} yrs with its entire dataset.

nEXO is a proposed ~ 5 tonne detector. Its design will be optimized to take full advantage of the LXe TPC concept and can reach $0\nu\beta\beta$ half-life sensitivity of ~ 10^{28} yrs.

The EXO-200 Detector

EXO-200 Energy Resolution

Rotation angle chosen to optimize energy resolution at 2615 keV Combining Ionization and Scintillation energy to enhance energy resolution

Anticorrelation between scintillation and ionization in LXe known since early EXO R&D (E.Conti et al. Phys Rev B 68 (2003) 054201)

Topological Event Information in TPC

- TPC allows the rejection of gamma backgrounds because Compton scattering results in multiple energy deposits.
- SS/MS discrimination is a powerful tool not only for background rejection, but also for signal discovery.

EXO-200 TPC

EXO-200 Timeline

- Operation concluded in Dec 2018, with 234.1 kg·yr total exposure of ¹³⁶Xe
- Phase I from Sep 2011 to Feb 2014
 - Most precise $2\nu\beta\beta$ measurement, *Phys. Rev. C* **89**, 015502 (2013)
 - Stringent limit for $0\nu\beta\beta$ search, Nature **510**, 229 (2014)
- Phase II operation begins on Jan 31, 2016 with system upgrades
 - First results with Phase II data from upgraded detector, Phys. Rev. Lett. 120, 072701 (2018)
 - Results with the Complete data set published in Phys. Rev. Lett. 123, 161802 (2019)

Using Deep Learning for $0\nu\beta\beta$ Search

Use Deep neural network (DNN) bases to $0\nu\beta\beta$ discriminator, more powerful to boosted decision tree (BDT) based ones

- DNN trained on images built from U-wire waveforms
- Signal/background identification efficiency clearly correlates with the true event size

- Data/MC agreement validated with different data
 - γ: Ra-226, Th-228, Co-60 sources
 - β : $2\nu\beta\beta$ data
- Showed consistent and reasonable agreement

EXO-200 $0\nu\beta\beta$ search with complete dataset

Combined Phase I + II: [PRL 123, 161802 (2019)] Total exposure = 234.1 kg.yr Sensitivity 5.0x10²⁵ yr Limit $T_{1/2}^{0\nu\beta\beta} > 3.5 \times 10^{25}$ yr (90% C.L.) $\langle m_{\beta\beta} \rangle < (93 - 286)$ meV

Evolution of EXO-200 0 $\nu\beta\beta$ Results

The sensitivity gains continue to improve faster than statistics due to improvements in hardware and analysis. 2012: Phys.Rev.Lett. 109 (2012) 032505 2014: Nature 510 (2014) 229-234 2018: Phys. Rev. Lett. 120, 072701 (2018) 2019: PRL 123, 161802 (2019)]

From EXO-200 to nEXO

57

Pre-Conceptual Design of nEXO

- 5 tones of single phase LXe TPC.
- Ionization charge collected by anode.
- 178nm lights detected by ~4 m² SiPM array behind field shaping rings.

nEXO as a Discovery Tool

Multi-parameter analysis is a powerful tool for background identification and rejection

Y

.4 × 10²⁷

T^{1/2}

t

corresponding

0νββ

data,

10

nEXO Experimental Sensitivity

nEXO sensitivity reaches 10²⁸ yrs in 6.5 yr data taking

Barium Tagging for Background Rejection

 $^{136}_{54}Xe \rightarrow ^{136}_{56}Ba^{++} + 2e^{-} + 2v_{e}$

- In-situ identification of decay daughter nucleus Ba can be used to eliminate all radioactivity induced background.
- Ba ions have nice laser spectroscopy signatures.
- Difficult problem to detect a single ion inside few hundred kgs of xenon.

C. Chambers et al., Nature, 569, 203–207 (2019)

Ba Tagging in Gas Xe (NEXT)

Nature 583 (2020) 48-54 ACS Sens 6 (2021) 192-202

- Use single molecule fluorescent imaging to visualize ("tag") a single Ba²⁺ ion as it arrives at the TPC cathode (D. Nygren)
- Fluorescent Bicolor Indicators (FBI): enhanced fluorescence and spectral separation
- First demonstration of in-vacuo chelation

Time Projection Chamber (TPC)

Strengths

- Monolithic detector
- Good energy resolution
- Event topology measurements
- Excellent background rejection with multi-parameter analysis
- Isotope can be purified continuously and exchanged
- Tagging decay daughter possible for Xe

Weaknesses

- Worse energy resolution than Ge and Bolometer
- Detector more complex compared with LS
- Isotope availability

Beyond Tonne scale detectors (2030)

Large TPC

50 t scale LXe detector R&D underway for dark matter search. Some synergy with $0\nu\beta\beta$ searches

JUNO can be upgraded by loading $0\nu\beta\beta$ isotope in LS

Loaded LS

Background sources will require careful study and control.

0vββ search with PandaX-4T and beyond

- PandaX-4T multi-physics detector was commissioned in late 2020; first DM search results released
- 4T natural xenon→ ~350 kg of ¹³⁶Xe; 400 kg of ¹³⁴Xe; 4 kg of ¹²⁴Xe: ββ and ECEC searches in multiple isotopes possible
- Th and Co calibration runs for high energy ROI
- Compared to PandaX-II: much improved energy resolution (~4%→1.5%); cleaner detector; better self-shielding

- Active R&D on new generation of liquid xenon TPC at CJPL
- Exploring options for better ββ physics:
 - New PMT for low radioactivity, better position recon, fast timing, no saturation
 - New vessel materials/designs for minimizing background
 - Enrichment with cryogenic distillation

PandaX for double beta decay

Summary

• Neutrinoless double beta search is the most sensitive probe for the Majorana nature of neutrinos.

• After decades of research, physicists are ready to build "tonne-scale" experiments to probe the entire inverted hierarchy region.

• Probing the normal hierarchy will require continued development in new technology and ideas.

Hope you will join us for the adventure!