High-energy neutrino astronomy

... and astrophysics

https://multimessenger.desy.de/

Winter, Walter DESY, Zeuthen, Germany

CCEPP summer school, CAS Beijing, China Aug. 20-21, 2021

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Contents

- Observations (overview of selected results)
- Physics of neutrino production (theory)
- Neutrinos from AGN blazars (overview)
- Multi-messenger interpretation of TXS 0506+056
- Diffuse neutrino flux from AGN blazars?
- Neutrinos from Tidal Disruption Events (TDEs)
- Neutrinos and the origin of the Ultra-High Energy Cosmic Rays (UHECRs)
- The future of neutrino astronomy \rightarrow
- Conclusions

Observations (overview)

Observing TeV-PeV neutrinos with IceCube

A flux of high-energy cosmic neutrinos

IceCube: Science 342 (2013) 1242856; Phys. Rev. Lett. 113, 101101 (2014); update from Kopper at ICRC 2017

New event classes

Glashow resonance

Double bang (v_{τ}) candidates

IceCube, Nature 591 (2021) 7849, 220

IceCube, arXiv:2011.03561 and PRL 125 (2020) 12, 121104

DESY. | CCEPP 2021 | Winter Walter

Diffuse neutrino flux – observed in different event samples

HESE = High Energy Starting Events

Interaction within detection volume

Outer layer of detector used as veto (atm. muons)

Sensitive to both hermispheres, all flavors

Lower energies = contained events

TGM = Throughgoing muons

 $\begin{array}{c} \text{Sensitive to } \nu_{\mu} \text{ only} \\ \text{from Northern} \\ \text{hemisphere} \end{array}$

Large effective volume (interaction may be outside detector)

Muon energy (proxy) gives a lower limit for neutrino energy

Page 8

Time-integrated 10 year point source searches

 Most significant: NGC 1068 (3σ post-trial) Starburst galaxy

- The other three are AGN blazars
- TXS 0506+056 is most prominent because it was found earlier through a multi-messenger follow-up (will mostly talk about that later ...)

IceCube, PRL 124 (2020) 5, 051103; from G. Illuminati @ Paris 2020

Stacking limits ...

Gamma-Ray Bursts (GRBs)

- Transients, time variability
- High luminosity over short time

• Less than ~1% of observed ν flux

IceCube, Nature 484 (2012) 351; Newer version: arXiv:1702.06868

... for the most energetic sources classes

Active Galactic Nuclei (AGNs)

- Steady emission with flares
- Lower luminosity, longer duration

• Less than ~25% of observed v flux?

IceCube, Astrophys. J. 835 (2017) 45

Conceptual challenges

Gamma-ray diffuse flux

Multiplet or point source limits

Non-observation of multiplets limits source density of powerful sources

Constrains spectral index for non-AGN contributions (starburst galaxies, ...)

Bechtol et al, 2017; Palladino et al, arXiv:1812.04685 [if they are to power the entire diffuse flux]

Kowalski, 2014; Ahlers, Halzen, 2014; Fig. from Murase, Waxman, 2016; see also: Dekker, Ando, 2018

Other challenges

- Observed through-going muon flux harder than HESE
- A muon track with a reconstr. muon energy of 4.5 PeV
 Aartsen et al, ApJ 833 (2016) 3
 Primaries with E > 100 PeV?
- Anisotropy for HESE events with
 > 100 TeV deposited energy.
 (data: Aartsen et al, arXiv:1710.01191)
 Evidence for Galactic contribution (2σ)?

Fig. from: Palladino, Winter, A&A 615 (2018) A168

Multiple contributions to diffuse flux? A possible scenario.

Neutrino energy	[TeV]
-----------------	-------

Name	Description/examples	Neutrino prod.
Atmosph.	Residual atmospheric backgrounds (atmospheric muons or neutrinos) passing the veto systems	p, K decay, charmed mesons
Galactic	Neutrinos from Milky Way, e.g. from cosmic ray int. with gas or point sources	pp interactions
X _{pp}	EXtragalactic neutrinos, e.g. starburst galaxies, ~E ⁻² spectrum (Fermi acc.!)	pp interactions
Χ _{ργ}	EXtragalactic v with hard (~ E^{-1}) spectrum; highest E; UHECR connection?	pγ interactions

DESY. | CCEPP 2021 | Winter Walter

Palladino, Winter, A&A 615 (2018) A168

Conclusions for different event samples

Through-going muons are most promising sample for extragalactic origin

HESE cascades

ID	Deposited energy [TeV]	Initial neutrino energy within 67% C.L. [TeV]	Galactic latitude (°)	Galactic longitude (°)	Atmospheric %	Galactic %	Х-рр %	Х-рү %
1	47,6	53	-56,26	167,57	80,6	0,0	18,6	0,8
2	117	129	-12,76	7,86	25,7	53,9	18,7	1,7
4	165,4	183	8,88	-71,20	43,6	5,6	46,2	4,6
6	28,4	31	11,77	-107,66	89,2	0,0	10,4	0,4
7	34,3	38	-72,10	-64,71	86,6	0,0	12,9	0,5
9	63,2	70	54,41	-167,29	74,1	0,0	24,7	1,2
10	97,2	107	-83,32	13,88	62,1	0,0	35,5	2,3
11	88,4	98	39,03	-106,87	64,9	0,0	33,0	2,0
12	104,1	115	-29,67	-14,50	54,7	8,9	34,0	2,4
14	1040,7	1151	0,54	0,86	6,1	51,7	25,5	16,7
15	57,5	64	-23,67	-12,29	61,8	19,1	18,3	0,9
16	30,6	34	40,00	-57,18	87,6	0,7	11,3	0,4
17	199,7	221	37,33	30,67	39,8	2,7	51,4	6,0
19	71,5	79	-36,09	-91,35	70,9	0,0	27,6	1,5
20	1140,8	1261	-47,17	-71,50	12,3	0,0	53,3	34,4
21	30,2	33	-85,51	81,54	88,4	0,0	11,2	0,4
22	219,5	243	-19,66	17,64	27,4	28,2	39,2	5,3
24	30,5	34	-6,84	19,51	19,1	78,3	2,5	0,1
25	33,5	37	-9,87	21,69	30,3	65,1	4,4	0,2
26	210	232	45,77	-152,20	39,6	0,0	53,8	6,6
27	60,2	67	10,84	-126,55	75,3	0,0	23,5	1,1
29	32,7	36	6,83	76,01	84,6	3,0	11,9	0,4
-	_							

[...]

Atmospheric BG dominant Possible **Galactic** component (soft!)

HESE tracks

ID	Deposited energy [TeV]	Initial neutrino energy within 67% C.L. [TeV]	Galactic latitude (°)	Galactic longitude (°)	Atmospheric %	Galactic %	Х-рр %	Х-рү %
3	78,7	295	5,18	-107,74	72,1	0,0	24,4	3,6
5	71,4	267	7,22	-142,78	74,3	0,0	22,7	3,0
8	32,6	122	40,47	-69,10	88,4	0,0	10,8	0,7
13	252,7	946	-4,84	162,19	42,3	0,0	41,0	16,7
18	31,5	118	-65,97	33,14	88,9	0,0	10,4	0,7
23	82,2	308	46,38	-33,45	71,0	0,0	25,1	3,8
28	46,1	173	-10,74	-65,56	83,1	0,0	15,5	1,4
37	30,8	115	66,30	-136,03	89,2	0,0	10,2	0,6
38	200,5	751	-1,30	-163,52	48,2	0,0	38,9	12,9
43	46,5	174	38,69	-39,88	82,9	0,0	15,7	1,4
44	84,6	317	-46,25	65,78	70,4	0,0	25,6	4,0
45	429,9	1610	-24,08	-55,18	30,5	0,0	41,9	27,5
47	74,3	278	48,67	113,12	73,4	0,0	23,4	3,2
53	27,6	103	11,53	-20,97	90,5	0,0	9,0	0,5
58	52,6	197	-14,39	-117,65	80,7	0,0	17,6	1,8
61	53,8	201	-48,57	-152,96	80,2	0,0	17,9	1,9
62	75,8	284	75,33	-73,94	72,9	0,0	23,7	3,3
63	97,4	365	52,95	-118,64	66,9	0,0	28,1	5,0
71	73,5	275	-27,92	-136,75	73,6	0,0	23,2	3,2
76	126,3	473	36,26	10,05	60,3	0,0	32,5	7,2
78	56,7	212	-53,26	103,10	79,2	0,0	18,8	2,0
82	159,3	596	40,83	21,18	54,2	0,0	36,0	9,8

Atmospheric BG dominant Extragalactic contribution "hidden"

Through-going muons

ID	Deposited energy [TeV]	Initial neutrino energy within 67% C.L. [TeV]	Galactic latitude (°)	Galactic longitude (°)	Atmospheric %	Galactic %	Х-рр %	Х-рү %
1	480	1797,1	-56,90	155,91	18,5	0,0	48,3	33,2
2	250	936,0	-8,36	50,93	24,2	0,0	55,6	20,2
3	340	1272,9	-32,60	93,04	21,4	0,0	52,7	25,9
4	260	973,4	45,74	171,42	23,8	0,0	55,3	20,9
5	230	861,1	-10,46	63,41	25,1	0,0	56,1	18,8
6	770	2882,8	33,5268748	33,63	15,0	0,0	40,4	44,6
7	460	1722,2	20,13	38,05	18,8	0,0	48,9	32,3
8	660	2471,0	-34,56	71,33	16,1	0,0	43,2	40,8
9	950	3556,7	-11,55	-153,66	13,6	0,0	36,5	49,9
10	520	1946,8	-1,83	37,50	9,4	41,4	25,4	23,8
11	240	898,5	-21,92	46,32	24,6	0,0	55,9	19,5
12	300	1123,2	50,34	32,26	22,5	0,0	54,0	23,5
13	210	786,2	23,16	62,37	26,0	0,0	56,7	17,4
14	210	786,2	-26,38	54,90	26,0	0,0	56,7	17,4
15	300	1123,2	51,14	-2,78	22,5	0,0	54,0	23,5
16	660	2471,0	-37,84	152,62	16,1	0,0	43,2	40,8
17	200	748,8	82,75	73,54	26,5	0,0	56,9	16,6
18	260	973,4	-40,19	61,58	23,8	0,0	55,3	20,9
19	210	786,2	57,74	-32,38	26,0	0,0	56,7	17,4
20	750	2807,9	69,98	-154,13	15,2	0,0	40,9	43,9
21	670	2508,4	-1,01	-163,88	16,0	0,0	42,9	41,1
22	400	1497,6	45,21	-7,24	20,0	0,0	50,8	29,2
23	390	1460,1	-47,39	153,90	20,2	0,0	51,1	28,7
24	850	3182,3	6,12	66,95	14,3	0,0	38,6	47,1

[...]

Extragalactic flux dominant Low "background" (atm. + Galactic)

A different ansatz

- Take confirmed neutrino-source associations as a proxy, include redshift distributions and typical luminosities
- Large uncertainties, no spectral information, possible atm. background contamination:

Type	Flux / ϕ_{IC}					
турс	warm-up	simple	full			
AGN		0.34	$0.36\substack{+0.31\\-0.27}$			
blazar	0.1	0.05	$0.06\substack{+0.06\\-0.04}$			
TDE	0.55	0.26	$0.32^{+0.30}_{-0.24}$			
GRB		< 0.01				
CCSN		< 1.4				
other			$0.28^{+0.38}_{-0.25}$			

Bartos et al, arXiv:2105.03792

Multi-messenger follow-ups

... starting the golden age of neutrino astronomy

- Global alerts initiated by neutrino events
- Especially tracks with good directional information, high enough energy
- Other instruments triggered, who search for counterparts
- Prominent examples: TXS 0506+056 (AGN blazar), AT2019dsg (Tidal Disruption Events), but several other associations as well

Physics of neutrino production

Particle acceleration ... a pragmatic perspective

Lorentz force = centrifugal force $\Rightarrow E_{max} \sim Z c B R$

•

р

B field

Example: *Fermi shock acceleration*

- Energy gain per cycle: E $\rightarrow \eta$ E
- Escape probability per cycle: P_{esc}
- Yields a **power law** spectrum ~ $E^{\frac{\ln P_{esc}}{\ln \eta}-1}$
- In P_{esc}/In η ~ -1 (from compression ratio of a strong shock), and E⁻² is the typical "textbook" spectrum

R ~ 100,000 – 10,000,000,000 km

 accelerate particles to such extreme energies?

Which mechanisms can

 Theory of acceleration challenging, but we **do observe** power law (= nonthermal) spectra in Nature

E_{max} ~ 300,000,000 TeV

 $B \sim 1 mT - 1 T$

For multimessenger perspective: adopt pragmatic point of view! (we know that it works, somehow ...,

Secondary production: Particle physics 101?

• Beam dump picture (particle physics)

- Astrophysical challenges:
 - Feedback between beam and target (e.g. photons from π^0 decays)
 - Need self-consistent description called radiation model
 - Density *in* source, in general, **not** *what you get* from the source

Here: typically a spherical blob in relativistically moving frame

•

Global radiation models (theory)

• Time-dependent PDE system, one PDE per particle species i

$$\frac{\partial N_i}{\partial t} = \frac{\partial}{\partial E} \left(-b(E)N_i(E) \right) - \frac{N_i(E)}{t_{\rm esc}} + Q(E)$$

Cooling (continuous) Escape Injection

 $b(E)=-E t^{-1}_{loss}$ "radiation processes Q(E,t) [GeV⁻¹ cm⁻³ s⁻¹] N(E,t) [GeV⁻¹ cm⁻³] particle spectrum including spectral effects

• Injection: species *i* from acceleration zone, and from other species *j*:

$$Q(E) = Q_i(E) + Q_{ji}(E)$$
$$Q_{ji}(E_i) = \int dE_j N_j(E_j) \frac{\Gamma_j^{\text{IT}}(E_j)}{\int_j^{\text{IT}}(E_j)} \frac{dn_{j \to i}^{\text{IT}}}{dE_i}(E_j, E_i)$$
$$\begin{array}{c} \text{Density} \\ \text{other} \\ \text{species} \end{array} \begin{array}{c} \text{Inter-} \\ \text{action} \\ \text{rate} \end{array} \begin{array}{c} \text{Re-distribution} \\ \text{function} \\ \text{+secondary} \\ \text{multiplicity} \end{array}$$

Strongly forward peaked spectra in interaction frame (e.g. blob frame)

→ Re-distribution function narrow + peaked

E.g.
$$E_v \sim 0.25 E_\pi$$

~ 0.25 x 0.2 x E_p = 0.05 E_p

Radiation processes

Examples for e and p

- These processes lead to cooling, escape (→ leave species), and re-injection terms
- Other processes relevant for neutrinos: synchroton cooling of muons, pions

Multiple messengers from photo-pion production

- Neutrino peak determined by maximal cosmic ray energy [conditions apply: for target photons steeper (softer) than ϵ^{-1} (and low enough ϵ_{min})]
- Interaction with target photons

 (Δ-resonance approximation for C.O.M. energy):

$$p + \gamma \rightarrow \Delta^+ \rightarrow$$

 E_{γ} [keV] ~ 0.01 Γ²/ E_{ν} [PeV] keV energies interesting! (computed for Δ-res, yellow) →

 $\pi^0 \to \gamma + \gamma$

Injected at $E_{\gamma,peak} \sim 0.1 E_{p,max}$ TeV–PeV energies interesting!

(but: electromagnetic cascade in source!)

AGN neutrino spectrum (example)

Fiorillo et al, JCAP 07 (2021) 028

pp versus py interactions When do the neutrinos follow the primary spectrum?

- pp interactions • pp interactions $p + p \rightarrow \begin{cases} \pi^+ + anything & 1/3 \text{ of all cases} \\ \pi^- + anything & 1/3 \text{ of all cases} \\ \pi^0 + anything & 1/3 \text{ of all cases} \end{cases}$ (Branchings actually not exactly 1/3; see JCAP 1701 (2017) 033) Spectrum: E^{- α} non-rel. E^{- α} Examples: starburst galaxies, environments with gas/dust
- **p**γ **interactions**: more sophisticated, as relativistic target (power law)

 $p + \gamma \rightarrow \Delta^+ \rightarrow \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$ $E^{-\alpha} \quad E^{-\beta} \quad E^{-\alpha+\beta-1}$ $E^{-\alpha} \text{ only if } \beta=1!$ Examples: GRBs ($\beta \sim 1$), AGN blazars ($\beta > 1$)

• Effect of multi-pion production (p γ): Dominates if target photon temperature high enough (thermal target). Examples: TDEs, AGN cores $p + \gamma$

Decouple the maximal cosmic ray and neutrino energies?

Effect of secondary cooling

 Synchrotron cooling of secondaries (μ, π, K) in neutrino production chain:

 $\pi^+ \rightarrow \mu^+ + \nu_\mu, \\ \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

 Spectra (μ, π, K) energy loss-steepend above critical energy (synchrotron cooling faster than decay)

$$E_c' = \sqrt{\frac{9\pi\epsilon_0 m^5 c^7}{\tau_0 e^4 B'^2}}$$

Depends on particle physics only (m, τ_0 of secondary), and **B**⁴

 Points towards sources with strong enough B' if UHECR connection: Gamma-Ray Bursts, (jetted) Tidal Disruption Events, ...

Neutrinos from AGN blazars

Overview

AGN blazar

Science 361 (2018) no. 6398, eaat1378

https://multimessenger.desy.de/

CCEPP 2021 | Winter Walter

What is an AGN blazar? (AGN = Active Galactic Nucleus)

Electromagnetic picture of blazars

- Exhibit a typical two-hump structure
- Measured over extremely large range of electromagnetic spectrum
- Often observation "campaigns" at same time, or follow-up searches of neutrinos
- Simplest explanation: first peak from electron synchroton, second from inverse Compton up-scattering of these synchrotron photons off the same electrons
 (= SSC "synchrotron self-Compton model")
 B e⁻

Credits: VLA, ASAS-SN, Swift, Fermi, MAGIC, DESY science comm. lab., Pian 2019, Gao et al, 2019

Typical SED models (qualitatively)

Proton synchrotron models (require large B')

Synchrotron self-Compton (SSC) or

• Pion cascade models

One spherical radiation zone

Fewest assumptions

• More exotic hadronic models, for example:

•

A population of blazars

- **FSRQs** (Flat Spectrum Radio Quasars): • higher luminosities and additional spectral features compared to **BL Lacs**
- There is a (empirical, disputed) relationship • between luminosity and spectral energy distribution (SED) aka the "blazar sequence"

A neutrino from the flaring AGN blazar TXS 0506+056

125m

Sept. 22, 2017: A neutrino in coincidence with a blazar flare

SED from a multi-wavelength campaign

Color: coincident with neutrino; gray: archival data

Science 361 (2018) no. 6398, eaat1378

Analysis of archival neutrino (IceCube)

A (orphan) neutrino flare (2014-15) found from the same object in archival neutrino data

During that historical flare:

- Coincident data sparse (since no dedicated follow-up campaign)
- No significant gamma-ray activity

Fermi-LAT data; Padovani et al, MNRAS 480 (2018) 192

DESY. | CCEPP 2021 | Winter Walter

Number of predicted neutrinos from a theoretical model?

Sept. 22, 2017: One neutrino observed

Good reasons to expect that the *predicted* model neutrino flux should be significantly lower

2014-2015: 13 ± 5 neutrinos observed

Relatively high number, Gaussian statistics \rightarrow Model prediction of similar order needed

• Eddington bias:

Trial factor for numerous faint sources (here 10⁴ equal-lumi BL Lacs z-distributed within z<4, 10 events total)

Strotjohann, Kowalski, Frankowiack, A&A 622 (2019) L9; see also Palladino, Rodrigues, Gao, Winter, ApJ 871 (2019) 41

Multi-messenger interpretation of TXS 0506+056

One zone model results (2017 flare)

Leptonic models

Violate X-ray data ٠

> X-ray (and TeV γ -ray) data indicative for hadronic origin

Hybrid or p synchrotron models

Violate energetics (L_{edd}) by a • factor of a few hundred or significantly exceed v energy

Gao, Fedynitch, Winter, Pohl, *Nature Astronomy 3 (2019) 88;* Page 33 see also Cerutti et al, 2018; Sahakyan, 2018; Gokus et at, 2018; Keivani et al, 2018

More freedom through multiple radiation zones

... to solve energetics problem (examples). At the expense of more parameters.

Formation of a compact core **External radiation fields** Large blob, persistent emission, quiet state Compact core, ignited during flare state ▲ ~ 0.05 pc **7**2 θ Observer at earth _ 1.35 Gpc Sikora et al, 2016 10 pc NUU e٧ Ge\ TeV PeV ke\/ MeV Frequency [Hz] 1031 10^{33} Leptonic Hadronic Muon neutrinos GeV-v -10 N 10⁻¹¹ Optical $\log_{10}[E^2 dN/dE (erg cm^{-2} s^{-1})]$ EU o 10⁻¹³ TeV-γ -11 [er Absorbed $E_{p,max} = 10^{16}$ during N e- sync. iet -12 10^{-17} SSC EC -13 - $\gamma\pi$ cascade 10 15 20 25 30 µ sync. log₁₀[Frequency (Hz)] MAGIC collaboration, 2018; BH cascade see also Keivani et al, 2018 total EM - V_U Gao et al, Nature Astronomy 3 (2019) 88

Jet-cloud interactions/ several emission zones

see also Xue et al, 2019

DESY. | CCEPP 2021 | Winter Walter

The archival (2014-15) neutrino flare of TXS 0506+056

- Electromagnetic data during neutrino flare sparse (colored)
- Hardening in gamma-rays? (red shaded region)

Padovani et al, 2018; Garrappa et al, arXiv:1901.10806

Theoretical challenge: Where did all the energy go to?

$$p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ & \bullet & \mathsf{v} & \text{Comparable} \\ p + \pi^0 & \bullet & \gamma & \text{energy} \end{cases}$$

Options for hiding the gamma-rays (+electrons):

- Reprocessed and "parked" in E ranges without data during flare? (e.g. MeV range, sub-eV range)
 - → Can this be accommodated in a self-consistent model (next slide)? Fine-tuned during flare?
 - \rightarrow Requires monitoring in all wavelength bands
- Leave source + **dumped** into the **background light**?
 - → Implies low radiation density to have gamma-rays escape
 - → Difficult to accommodate energetics if sole solution (low neutrino production efficiency!)
- Absorbed or scattered in some opaque region,
 - e.g. dust/gas/radiation?
 - → Requires additional model ingredients see e.g. Wang et al, 2018; Murase et al, 2018

One zone description of spectral energy distribution

Energy deposited in MeV range and absorbed in EBL (here about 80% absorbed, 20% re-processed for E_{γ} > TeV)

Primary electron processes (synchrotron and inverse Compton) dominate *nowhere* in this model!

From: Rodrigues, Gao, Fedynitch, Palladino, Winter, ApJL 874 (2019) L29; see also Halzen, et al, arXiv:1811.07439

External radiation field example

Can yield up to about five neutrino events during neutrino flare

- TXS 0506+056 may be actually an FSRQ Padovani et al, MNRAS 484 (2019) L104
- These can be back-scattered into the jet frame. Example:

Rodrigues et al, ApJ 854 (2018) 54

• Results for TXS 0506+056:

 Maximally five events; may be consistent with IceCube result if different spectral shape is assumed

Rodrigues, et al, ApJL 874 (2019) L29; see also Reimer et al, 1812.05654

Summary (part I)

- Several source associations of neutrinos, and a diffuse flux of astrophysical neutrinos
- AGN blazars established a likely source of neutrinos, but probably not the dominant contribution to the diffuse flux (stacking limit!)
- AGN cores, starburst galaxies possible contenders (abundant, less luminous)
- Better statistics needed for firm conclusions
- Open issue: Galactic sources? Probably to be addressed by KM3NeT/ANTARES in future.

