Neutrino cosmology

Yvonne Y. Y. Wong The University of New South Wales, Sydney, Australia

CCEPP Summer School on Neutrino Physics, August 20 – 28, 2021

Or, how neutrinos fit into this grand scheme?

The grand lecture plan...

Lecture 1: Neutrinos in homogeneous cosmology

- 1. The homogeneous and isotropic universe
- 2. The hot universe and the relic neutrino background
- 3. Measuring the relic neutrino background via N_{eff}

Lecture 2: Neutrinos in inhomogeneous cosmology

Lecture 1: Neutrinos in homogeneous cosmology

1. The homogeneous and isotropic universe

2. The hot universe and the relic neutrino background

3. Measuring the relic neutrino background via $\rm N_{\rm eff}$

Useful references...

- Lecture notes
 - A. D. Dolgov, *Neutrinos in cosmology*, Phys. Rept. **370** (2002) 333 [hep-ph/0202122]
 - J. Lesgourgues & S. Pastor, *Massive neutrinos and cosmology*, Phys. Rep. **429** (2006) 307 [astro-ph/0603494].
- Textbooks
 - J. Lesgourgues, G. Mangano, G. Miele & S. Pastor, *Neutrino* cosmology

1. The homogeneous and isotropic universe...

The concordance flat ΛCDM model...

• The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

Friedmann-Lemaître-Robertson-Walker universe...

- **Cosmological principle**: our universe is spatially homogeneous and isotropic on sufficiently large length scales (i.e., we are not special).
 - − Homogeneous → same everywhere
 - Isotropic \rightarrow same in all directions
 - Sufficiently large scales \rightarrow > O(100 Mpc)

Size of visible universe ~ O(10 Gpc)

Friedmann-Lemaître-Robertson-Walker universe...

- Homogeneity and isotropy imply maximally symmetric 3-spaces (3 translational and 3 rotational symmetries).
 - A spacetime geometry that satisfies these requirements:

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$
 FLRW metric

$$\mathbf{x} = -1 \text{ (hyperbolic), 0 (flat), +1 (spherical)}$$

 $\frac{a(t_2)}{a(t_1)}$ = Factor by which a physical length scale increases between time t_1 and t_2 .

• An observer at rest with the FLRW spatial coordinates is a **comoving observer**.

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

 \rightarrow The **physical distance** between two comoving observers increases with time, but the coordinate distance between them remains unchanged.

Cosmological redshift...

• All test particles (massive or massless) moving on geodesics of an FLRW universe suffer cosmological redshift:

• In an FLRW universe, there is a one-to-one correspondence between *t*, *a*, and *z*:

 \rightarrow We use them interchangeably as a measure of time.

Matter/energy content: conservation law...

- $\nabla_{\mu}T^{\mu\nu}_{(\alpha)}=0$
- Local conservation of energy-momentum in an FLRW universe implies:

Energy
density
$$\frac{d \rho_{\alpha}}{d t} + 3 \frac{\dot{a}}{a} (\rho_{\alpha} + P_{\alpha}) = 0$$
 Pressure
Continuity equation

- There is one such equation for each substance α .
- We need in addition to specify a relation between ρ(t) and P(t) (a property of the substance).

$$w_{\alpha}(t) \equiv \frac{P_{\alpha}(t)}{\rho_{\alpha}(t)}$$

w = Equation of state parameter

• Assuming a constant w_{α} :

$$\rho_{\alpha}(t) \propto a^{-3(1+w_{\alpha})}$$

How energy density evolves with the scale factor.

- Matter/energy content: what is out there?
- Nonrelativistic matter •
 - Atoms (or constituents thereof); "baryons" in cosmology-speak.
 - Dark matter (does not emit light but feels gravity); GR people call it "dust".
- **Ultra-relativistic radiation** (at least for a • significant part of their evolution history)
 - Photons (mainly the CMB)
 - Relic neutrinos (analogous to CMB)
 - Gravitational waves
- **Other** funny things
 - Cosmological constant/vacuum energy
 - nt - ??

$$w_m \simeq 0$$

 $\Rightarrow \rho_m \propto a^{-3}$ Volume expansion

$$w_r = 1/3$$

$$\Rightarrow \rho_r \propto a^{-4} \quad \bigvee_{+}$$

olume expansion momentum redshift

 $\rho_{\alpha}(t) \propto a^{-3(1+w_{\alpha})}$

$$\Rightarrow \rho_{\Lambda} \propto \text{constant}$$

 $w_{\Lambda} = -1$

More space, more energy

Friedmann equation...

• Derived from the Einstein equation:

$$R = \text{Ricci scalar and tensor}$$

(nonlinear functions of the
 2^{nd} derivative of the
spacetime metric)

The Friedmann equation is an evolution equation for the scale factor a(t): •

$$H^{2}(t) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha} - K$$

Friedmann equation

- H pa
- **Friedmann+continuity** equations \rightarrow specify the whole system. ullet

Friedmann equation...

• You may also have seen the Friedmann equation in this form:

$$H^{2}(t) = H^{2}(t_{0}) \Big[\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{K}a^{-2}\Big]$$

$$\Omega_{\alpha} = \frac{\bar{\rho}_{\alpha}(t_{0})}{\rho_{\text{crit}}(t_{0})}, \quad \rho_{\text{crit}}(t) \equiv \frac{3H^{2}(t)}{8\pi G}, \quad \Omega_{K} \equiv -\frac{K}{a^{2}H^{2}(t_{0})}$$
Critical density
A flat universe means:

$$\Omega_m + \Omega_r + \Omega_\Lambda \simeq \Omega_m + \Omega_\Lambda = 1$$

From measuring the CMB temperature and energy spectrum.

Radiation energy density is negligibly small today: $\Omega_r \sim 10^{-5}$

Friedmann equation...

• You may also have seen the Friedmann equation in this form:

$$H^{2}(t) = H^{2}(t_{0}) \Big[\Omega_{m} a^{-3} + \Omega_{r} a^{-4} + \Omega_{\Lambda} + \Omega_{K} a^{-2} \Big]$$

$$\Omega_{\alpha} = \frac{\bar{\rho}_{\alpha}(t_{0})}{\rho_{\text{crit}}(t_{0})}, \quad \rho_{\text{crit}}(t) \equiv \frac{3 H^{2}(t)}{8 \pi G}, \quad \Omega_{K} \equiv -\frac{K}{a^{2} H^{2}(t_{0})}$$
Critical density

Current observations:

$$\Omega_m \sim 0.3, \quad \Omega_\Lambda \sim 0.7, \quad |\Omega_K| < 0.01$$
$$H_0 \equiv H(t_0) \sim 70 \quad \text{km s}^{-1} \text{Mpc}^{-1}$$

e.g., Ade et al. [Planck collaboration] arXiv:1502.01589

2. The hot universe and the relic neutrino background...

The hot universe...

• The early universe was a very hot and dense place.

 \rightarrow Frequent particle interactions.

• If the interaction rate (per particle) is so large that

Interaction rate Γ >> Expansion rate, H

 \rightarrow the interaction process is in a state of **equilibrium**.

Equilibrium...

• Consider the **weak interaction**. The interaction rate per particle is:

Number density $n \sim T^3$

$$\Gamma = n \langle \sigma v \rangle \sim G_F^2 T_{\bullet}^5$$

$$T = temperature$$

Fermi constant

Cross section $\sigma \sim G_F^2 T^2$ temperature Relative velocity $v \sim 1$

• The Hubble expansion goes like

$$H = \sqrt{\frac{8\pi G}{3}} \sum_{\alpha} \rho_{\alpha} \sim \frac{T^2}{m_{\rm pl}}$$

Planck mass

$$G_F \sim 10^{-5} \text{ GeV}^{-2}$$

 $m_{
m pl} \sim 10^{19} \text{ GeV}$

$$\frac{\Gamma}{H} \sim m_{\rm pl} G_F^2 T^3 \sim \left(\frac{T}{1 \text{ MeV}}\right)^3$$

 \rightarrow When the temperature exceeds O(1) MeV, even weak interaction processes are in a state of equilibrium!

Natural units $k_B = 1$

 g^* for the standard model of particle physics:

Particle content & interactions at 0.1 < T < 100 MeV...

QED plasma

$$e^+, e^-, \gamma$$

EM interactions:

 3 families of neutrinos + antineutrinos

$${\cal V}_e$$
 , ${ar
abla}_e$, ${\cal V}_\mu$, ${ar
abla}_\mu$, ${\cal V}_ au$, ${ar
abla}_ au$

Weak interactions @ T > O(1) MeV:

Particle content & interactions at 0.1 < T < 100 MeV...

QED plasma

$$e^+, e^-, \gamma$$

EM interactions:

3 families of neutrinos + antineutrinos

$${\cal V}_e$$
 , ${ar
abla}_e$, ${\cal V}_\mu$, ${ar
abla}_\mu$, ${\cal V}_ au$, ${ar
abla}_ au$

Weak interactions @T > O(1) MeV: $e^+e^- \leftrightarrow e^+e^-$ **Decoupled** $\rho \rho \leftrightarrow \rho \rho$ $\mathcal{V}_i \mathcal{V}_i \leftrightarrow \mathcal{V}_i \mathcal{V}_i$ $\gamma e \leftrightarrow \gamma e$ $\gamma \gamma \leftrightarrow e^+ e^$ $v_i \, \overline{v}_i \leftrightarrow v_j \, \overline{v}_j$ etc. etc. $v e \leftrightarrow v e$ $\Gamma \sim G_F^2 T^5$ Not efficient $H \sim T^2 / m_{\rm pl}$ Weak interactions @T > O(1) MeV: T< O(1) MeV

Thermal history of neutrinos...

Events

Photon temperature, T_y

Neutrino temperature

Phase space density

Thermal history of neutrinos...

Thermal history of neutrinos...

g^* for the standard model of particle physics: This drop here.

Comoving entropy density & its conservation...

• In a universe that expands **quasi-statically** (so that equilibrium is always maintained), the comoving entropy denisty *S* is approximately conserved.

Entropy conservation after neutrino decoupling...

Effective number of neutrinos N_{eff}...

 It is convenient to express the neutrino energy density relative to the photon energy density in terms of the N_{eff} parameter:

Total energy density in neutrinos
$$\rightarrow \sum_{i} \rho_{v_i} \equiv N_{eff} \times \left[\frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \rho_{\gamma} \right]$$
 "Standard" energy density per flavour assuming the "standard" neutrino temperature

• In the idealised scenario just discussed:

$$N_{\rm eff} = 3$$
 For 3 families
Three small corrections...

... make the neutrinos a little more energetic than is implied by $N_{eff} = 3$.

- Non-relativistic (m_e/T) correction
- Finite-temperature QED
- Non-instantaneous neutrino decoupling

Non-relativistic (m_e/T) correction...

Non-relativistic (m_e/T) correction...

Bennett, Buldgen, Drewes & Y³W 2019

Three small corrections...

... make the neutrinos a little more energetic than is implied by $N_{eff} = 3$.

- Non-relativistic (m_e/T) correction
- Finite-temperature QED
- Non-instantaneous neutrino decoupling

- Interactions in the QED plasma cause its thermodynamical properties to deviate from an ideal gas description.
- Lowest-order $O(e^2)$ correction to the QED partition function:

Ideal gas

Energy = kinetic energy + rest mass

Pressure = from kinetic energy

Ideal gas

+ EM interactions

Temperature -dependent dispersion relation

Energy = kinetic energy + rest mass

Pressure = from kinetic energy

Energy = modified kinetic energy + T-dependent masses Pressure = from modified kinetic energy

Modified QED equation of state

Ideal gas

+ EM interactions

Energy = kinetic energy + rest mass

Pressure = from kinetic energy

Energy = modified kinetic energy + T-dependent masses + interaction potential energy Pressure = from modified kinetic energy + EM forces

Modified QED equation of state

Neutrino decoupling temperature

Bennett, Buldgen, Drewes & Y³W 2019

Three small corrections...

... make the neutrinos a little more energetic than is implied by $N_{eff} = 3$.

- Non-relativistic (m_e/T) correction
- Finite-temperature QED
- Non-instantaneous neutrino decoupling

Non-instantaneous decoupling...

- Neutrino decoupling and electron/positron • **annihilation** occur at similar times $(T \sim 1 \text{ MeV})$ vs $T \sim 0.2$ MeV).
 - Neither event is exactly localised in time. —
 - Some neutrinos are still decoupled to the QED plasma when the annihilation happens.
 - \rightarrow Neutrinos at the high energy tail (where the interaction cross-section is larger) are affected by the entropy released in the annihilation.

 $T \sim 1 MeV$

• To track the neutrino decoupling process properly through the annihilation era, we need to use the **Boltzmann equation**:

Phase space density
of particle species 1

$$\frac{\partial f_1}{\partial t} = -\{f_1, H\} + C[f_1] \leftarrow \text{Collision term}$$
Hamiltonian for
particle propagation
where the collision term for, e.g., $1+2 \rightarrow 3+4$ is
9D phase space integral

$$C[f_1] = \frac{1}{2E_1} \int \prod_{i=2}^{4} \frac{d^3 p_i}{(2\pi)^3 2E_i} (2\pi)^4 \delta^4 (P_1 + P_2 - P_3 - P_4) |M|^2$$
Matrix element

$$\times f_{3}f_{4}(1\pm f_{1})(1\pm f_{2}) - f_{1}f_{2}(1\pm f_{3})(1\pm f_{4})$$

Quantum statistical factors

• To track **neutrino oscillations too**, we need to promote the classical Boltzmann equation for the phase space density to a **quantum kinetic** equation for the density matrix of the neutrino ensemble:

Precision computation of N_{eff} ...

Bennett, Buldgen, de Salas, Drewes, Gariazzo, Pastor & Y³W 2020 Froustey, Pitrou & Volpe 2020

• Taking into account all three of the aforementioned corrections:

$$N_{\rm eff} = 3.0440 \pm 0.0002$$

Standard-model corrections to $N_{\text{eff}}^{\text{SM}}$	Leading-digit contribution
m_e/T_d correction	+0.04
$\mathcal{O}(e^2)$ FTQED correction to the QED EoS	+0.01
Non-instantaneous decoupling+spectral distortion	-0.005
$\mathcal{O}(e^3)$ FTQED correction to the QED EoS	-0.001
Flavour oscillations	+0.0005
Type (a) FTQED corrections to the weak rates	$\lesssim 10^{-4}$

- Computed by two independent groups; agreement to 5 significant digits
- Error estimate = numerical resolution + uncertainty in solar mixing angle

Variation of N_{eff} with respect to neutrino mixing parameters.

Bennett, Buldgen, de Salas, Drewes, Gariazzo, Pastor & Y³W 2020

Take-home message...

Bennett, Buldgen, de Salas, Drewes, Gariazzo, Pastor & Y³W 2020 Froustey, Pitrou & Volpe 2020

 Precision calculations of the standard-model effective number of neutrinos, taking into finite-temperature effects, neutrino oscillations, etc., yield:

$$N_{\rm eff} = 3.0440 \pm 0.0002$$

Standard-model corrections to $N_{\text{eff}}^{\text{SM}}$	Leading-digit contribution
m_e/T_d correction	+0.04
$\mathcal{O}(e^2)$ FTQED correction to the QED EoS	+0.01
Non-instantaneous decoupling+spectral distortion	-0.005
$\mathcal{O}(e^3)$ FTQED correction to the QED EoS	-0.001
Flavour oscillations	+0.0005
Type (a) FTQED corrections to the weak rates	$\lesssim 10^{-4}$

3. Measuring the relic neutrino background via N_{eff}...

Direct detection of relic neutrinos...

... is a difficult business.

- Small interaction cross-section:
- Neutrino energy too small to cross most detection thresholds.
 - Conventional WIMP detection techniques via nuclear recoil don't work here.

A zero threshold process?

• One unique candidate here...

cf WIMP detection, ~ 10⁻⁴⁶ cm² $\sigma_{\nu N} \sim \frac{G_F^2 m_{\nu}^2}{\pi} \simeq 10^{-56} \left(\frac{m_{\nu}}{eV}\right)^2 \text{ cm}^2$ $\Delta p \sim m_{\nu} v_{\text{earth}} \simeq 10^{-3} m_{\nu}$ Speed of Earth with respect to

the CMB, \sim 370 km s⁻¹

Direct detection by neutrino capture... Weinberg 1962

β-decay end-point spectrum

Neutrino capture with KATRIN...

Kaboth, Formaggio & Monreal 2010

Requires a **10⁹ local overdensity of neutrinos** in a 3-year run for a 90% C.L. detection.

Realistic local neutrino overdensity...

The bottom line:

Direct detection of the relic neutrinos is not going to happen anytime soon...

... but there are other ways to establish their presence...

Indirect evidence for relic neutrinos...

• Light element abundances

<u>CMB anisotropies</u>

State-of-the-art: Temperature and polarisation fluctuations in the cosmic microwave background as seen by Planck. (Latest results 2018.)

Polarisation

CMB anisotropies are sensitive to N_{eff} too...

• At the most basic level, changing the **neutrino energy density** shifts the epoch of matter-radiation equality.

Radiation: $\rho_R \propto a^{-4}$ Matter: $\rho_M \propto a^{-3}$ Vacuum energy: $\rho_\Lambda \propto \text{const}$

But it's not as simple as that...

Figure courtesy of J. Hamann

Plenty of parameter degeneracies!

What the CMB really probes: equality redshift...

Ratio of 3rd and 1st peaks sensitive to the redshift of matter-radiation equality via the early ISW an other time-dependent effects.

Exact degeneracy between the physical matter density $\omega_{\rm m}$ and $\rm N_{\rm eff}$

What the CMB really probes: sound horizon...

What the CMB really probes: anisotropic stress...

Apparent (i.e., not physical) partial degeneracies with inflationary parameters: primordial fluctuation amplitude A_s and spectral index n_s .

- However, free-streaming (noninteracting relativistic) particles have anisotropic stress.
- First real signature of N_{eff} in the 3rd peak!

$N_{\mbox{\tiny eff}}$ signatures in the CMB damping tail...

- Measured by ACT since 2010; SPT since 2011; Planck since 2013.
- Probe photon diffusion scale:

$$\theta_d = \frac{r_d}{D_A} \quad \begin{array}{c} \text{Diffusion scale} \\ \text{at decoupling} \end{array}$$

Primary signature of N_{eff} in the Planck era.

Current constraints on N_{eff} ...

Aghanim et al. [Planck] 2018 Ade et al. [Planck] 2015

Planck-inferred $N_{\rm eff}$ compatible with 3.046 at better than 2σ .

ACDM+Neff 7-parameter fit	Planck 2018 (95%)	Planck2015 (95%)
TT+lowE	3.00 ^{+0.57} -0.53	3.13±0.64
+lensing+BAO	3.11 ^{+0.44} -0.43	n/a
TT+lowE+TE+EE	2.92 ^{+0.36} -0.37	2.99±0.40
+lensing+BAO	2.99 ^{+0.34} -0.33	n/a

ACDM+Neff+neutrino mass 8-parameter fit

 $N_{\rm eff} = 2.96_{-0.33}^{+0.34}$ $\sum m_{\nu} < 0.12 \text{ eV}$ 95% C. L. Planck TT+TE+EE+lowE +lensing+BAO

Flies in the ointment: the H₀ discrepancy...

4.2\sigma discrepancy between the Planck-inferred H₀ and local measurements:

- **TT+TE+EE+lowE+lensing** $H_0 = 67.36 \pm 0.54 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- Local measurement:

$$H_0 = 73.2 \pm 1.3 \,\mathrm{km \, s}^{-1} \,\mathrm{Mpc}^{-1}$$

Riess et al. 2021

Joint Planck+Riess 2018 fit varying N_{eff}:

$$N_{\rm eff} = 3.27 \pm 0.15$$

 $H_0 = 69.32 \pm 0.97 \,\rm km \, s^{-1} \, Mpc^{-1}$

Take-home message...

- The prediction of a relic neutrino background is as fundamental as the prediction of the CMB.
- Direct detection based on scattering seems impossible at the moment...
- However, we can establish the CvB's presence through its effects on
 - The light elemental abundances
 - The CMB temperature anisotropies
 - \rightarrow The Planck measurements are consistent with N_{eff} = 3.

→ However, a 4.2 σ discrepancy between Planck and local measurements of H₀ remains in Λ CDM, which cannot be completely resolved with N_{eff}>3. The discrepancy does however drive up slightly the preferred value of N_{eff} in a combined analysis.

Extra slides...

Primordial light elements...
Big bang nucleosynthesis...

- The production of **light nuclei** at temperatures: $T \sim O(100) \Rightarrow O(10)$ keV
 - Deuterium, Helium-3, Helium-4, Lithium-7, etc.
- A 2-parameter problem:
- The initial neutron-to-proton ratio.
 - Relic neutrinos affect mainly this

The baryon-to-photon ratio; determines when the production of the first nucleus in the chain, Deuterium, should begin.

Setting the n/p ratio...

Relevant temperatures: T ~ 0.8 \rightarrow 0.1 MeV

 At T > 1 MeV the neutronto-proton ratio is set by the interactions:

$$\overline{v}_e + p \rightarrow e^+ + n$$

$$v_e + n \rightarrow e^- + p$$

$$\left(\frac{n}{p}\right)_{\rm eq} \simeq \exp\left(-\frac{m_n - m_p}{T_{\gamma}}\right)$$

 After freeze-out neutron decay can still change the n/p ratio:

$$\tau_n = 885.6 \pm 0.8 \text{ s}$$

Freeze-out, i.e., Scattering rate per particle < Hubble expansion rate Relic neutrinos and the n/p ratio...

The n/p ratio affects **all** light elemental abundances.

Measuring primordial abundances...

• Light element abundances we observe in astrophysical systems today are generally **not at their primordial values**.

Deuterium	Destroyed in stars.	Data from high-z, low metallicity QSO absorption line systems
Helium-3	Produced and destroyed in stars. Complicated evolution.	Data from solar system and galaxies, but not used in BBN analyses.
Helium-4	Produced in stars by H burning.	Data from low metallicity, extragalactic HII regions.
Lithium-7	Destroyed in stars, produced in cosmic ray interactions.	Data from the oldest, most metal poor stars in the Galaxy.

• For measurements, low metallicity systems with as little evolution as possible are the best bets!

Light element constraints on N_{eff}...

Light element constraints on N_{eff}...

 $N_{\rm eff}$ = 3 is consistent with measurements.

Riemer-Sørensen & Jenssen 2017

Planck CMB: flies in the ointment...

Small fly: the $\sigma_{_8}$ - $\Omega_{_m}$ discrepancy...

