

韩柯HAN, Ke (SJTU)

PART2: LIQUID XENON DETECTORS 韩柯 HAN, Ke (SJTU)

OUTLINE FOR LIQUID XENON DETECTORS

- Advantage of Xenon
- ► Ionization detectors
 - ► LXeGRIT
- ► Scintillation detectors
 - ► XMass
 - ► MEG II LXe gamma ray detector
- ► Ionization + scintillation
 - ► Single phase TPC: EXO-200, etc
 - ► Dual phase TPC: PandaX-4T, etc

ADVANTAGE OF XENON

- ► Compared to other noble liquids:
 - ► High light yield with PMT-compatible wavelength
 - ► High Z for gamma detection
 - ► Multiple isotopes, rich physics
 - ► Easiest cryogenics requirement
- ► But
 - ► Expensive

IONIZATION DETECTORS

- LXeGRIT: A Liquid Xenon Gamma-Ray Imaging Telescope
- ► Energy range: 0.15 -10 MeV
- ► Energy resolution: 8.8% FWHM at 1 MeV

IONIZATION DETECTORS

LXeGRIT

SCINTILLATION DETECTORS: XMASS

- ► 800 kg of LXe with 642 PMT
- ► Simpler structure compared to TPC
- ► Low energy threshold (0.5 keV_{ee})
- Scintillation time profile for
 - Discrimination between nuclear recoil and Electron/gamma-ray
 - Vertex reconstruction
- Suffered from high background

COBRA superconducting magnet

Drift chamber

MEG II LXE DETECTOR

- ► 900L LXe detector
- ► Measures energy, position and timing of gamma-ray (52.8 MeV)
- ► Expected peformance:
 - ► Efficiency: 70%
 - ► Position resolution: 2.5 mm
 - ► Energy resolution $\sim 1\%$
 - ► Timing resolution: 40-60 ps

MEG II PHOTO SENSOR UPGRADE

- ► Replace 216 2-inch PMTs with 4092 12×12 mm² SiPMs
- ► VUV sensitive SiPM co-developed by MEG II and Hamamatsu
- > Improve energy/pos resolution by $2 \times$

Hamamatsu \$10943-4372

- 50 μ m pitch pixel crosstalk and afterpulse suppression - metal quench resister

- quartz window for protection (VUV-transparent)

IONIZATION+SCINTILLATION

► Clean anti-coorelation

► Best energy resolution can be achieved with a combinations of two channels

EXO-200 NEUTRINOLESS DOUBLE BETA DECAY EXPERIMENT

HAN, Ke (SJTU)

14

EXO-200

READOUT IONIZATION SIGNAL

- ► U and V wire planes to allow 2D position reconstruction of ionization signal
- ► 3 mm pitch decided by electric field uniformity, electron transparency
- ► 9 mm pitch from signal readout
- ► The solution: wire triplets
- ► Etched from a sheet of phosphor bronze
 - ► Ends of each triplets are folded as springs
 - ► Sqaure cross section: no gain.
 - ► 95.8% transparency each plane

READOUT SCINTILLATION

- ► 468 large arae APDs (200mm²)
 - Low radioactivity (w/o ceramic encapsulation)
 - ► More compact
 - ► Higher QE

EXO-200

Low gain and high noise: not an issue for double beta decay (MeV scale signal)

DUAL-PHASE TPC

- Convert ionization to photon signals via Electroluminescence in gas
- ► USE PMT or other light sensors TWICE for one event
- ► Ideally photosensors have 4Pi coverage, but ...
- ► Electroluminescence requires a higher E field

XENON1T early concept

DUAL-PHASE TPC

- Convert ionization to photon signals via Electroluminescence in
- ► USE PMT or other light sensors TWICE for one event
- ► Ideally photosensors have 4Pi coverage, but ...

► Electroluminescence requires a higher E field

PERFECT FOR DM DETECTION

Dark matter: nuclear recoil (NR)

S1 Drift time, S2

γ background: electron recoil (ER)

(S2/S1)_{NR}<<(S2/S1)_{ER}

Multi-site scattering background (ER or NR)

ER VS. NR BANDS

HAN, Ke (SJTU)

NEST Simulation

PHOTOSENSORS

- ► VUV sensitive, crogenic-compatible lowradioactivity PMTs
- ► The same type of Hamamatsu PMTs used by PandaX-4T, LZ, and XENON
- ► Cover the TPC with as many as PMTs and cover the rest surface with PTFE.
- Exploring other options: SiPMs and potentially better PMTs

LZ

FIELD CAGE

- Copper rings with resistors for field degradation
- ► PTFE for VUV light reflection
- ► Chanllenging machining and assembly
- Innovative designs need validations for performance and radioactivity requirement.

