NOBLE LIQUID DETECTOR TECHNOLOGY 韩柯 HAN, Ke (SJTU)

SECTION 1: INTRODUCTION 韩柯HAN, Ke (SJTU)

NEUTRINO DETECTION (INTERACTIONS WITH DETECTORS)

- ► Low energy (< 100 MeV)
 - Coherent scattering
 - Neutrino capture on radioactive nuclei
 Resonance production
 - ► Inverse beta decay

- ► High Energy (>100 MeV)
 - Elastic and quasielastic scattering
 - Deep inelastic scattering

HAN, Ke (SJTU)

NEUTRINO DETECTOR TECHNOLOGY

- Specifically designed neutrino detector for detecting neutrino
- ► Measure neutrino properties via the familiar gamma/electron/neutron/alpha, etc
- > Detectors in neutrino physics are not always about neutinos
 - ► e.g. neutrinoless double beta decay

Noble liquid detector technology, described more broadly.

STRUCTURE OF THIS SERIES

- medium; ionization and scintillation of NL
- 2. Liquid xenon detectors
- 3. Liquid argon detectors
- 4. Other NL detectors; NL detectors recap (by applications)

Reference: PDG, Aprile, Bolotnikov, Bolozdynya, and Doke: Noble Gas Detectors

HAN, Ke (SJTU)

1. Introduction: physics properties of noble liquids (NL); energy loss in

DETECTION OF WHAT?

$\checkmark Flux \quad \checkmark Energy \quad \checkmark Tracks \quad \checkmark Timing structure$

Event by event detection only

HAN, Ke (SJTU)

DETECTION OF WHAT?

 \checkmark Tracks \checkmark Timing structure √ Energy √ Flux

Event by event detection only

DETECTION OF WHAT?

 \checkmark Tracks \checkmark Timing structure √ Energy √ Flux

Event by event detection only

HOW A PULSE IS GENERATED?

Energy loss in a detector medium:

- ► Charged particle
 - ► Electrons
 - ► Alpha particles
 - ► ions
- ► Neutral particles:
 - ► Photons: gamma-ray, x-ray
 - ► Neutrons
 - ► Neutrinos

► Scintillation

Ionization

► Heat

→ electronic signal

NOBLE LIQUIDS

	2 He	10 Ne	18 Ar	₃₆ Kr	₅₄ Xe
lsotopes	3, <u>4</u>	<u>20</u> , 21, <u>22</u>	36, 38, <u>40</u>	78, <u>80, 82, 83,</u> <u>84, 86</u>	124, 126, <u>128, 129,130</u> <u>131, 132, 134, 136</u>
Mol. Mass (g/mol)	4.0026	20.183	39.948	83.80	131.3
Abundance	$\checkmark\checkmark$	\checkmark	$\checkmark \checkmark \checkmark$		
Boiling point @ 1ATM (K)	4.2 (⁴ He)	27.102	87.26	119.74	169
Liquid density (kg/m³)	130 (4.2)	1204	1399	2413	3100
Gas density (kg/m³)	0.1785	0.8881	1.7606	3.696	5.8971

N₂ boiling point: 79K; NaI density 3890 kg/m³ HAN, Ke (SJTU)

ENERGY LOSS IN MEDIUM: GAMMA CROSS SECTION IN XENON

ENERGY LOSS IN MEDIUM: GAMMA CROSS SECTION IN XENON

HAN, Ke (SJTU)

IONIZATION VS. SCINTILLATION

- ► Clean anti-coorelation
- ► Change vs. energy
- ► Change vs. E field
- Average energy scale for ionization or scintillation?
- Suppression of ionization/scintillation?

IONIZATION SIGNAL: DRIFT

HAN, Ke (SJTU)

ELECTRON "LIFETIME"

- Drifting electrons may recombine with xenon
- Electronegative negative impurity (e.g. water) greatly increases the probability of recomination, thus electron loss

ln(S2)

IONIZATION SIGNAL: COLLECTION

Electron Readout:

- ► Wires: induction and collection
- ► Micro-structure: amplification before collection
- ► Charge readout tiles: pixelization

CERAMIC INTERFACE BOARDS

SCINTILLATION SIGNAL

Light emssion in VUV region

Fig. 3.41 Three LET dependences of scintillation yield curves, the upper curve is that of NaI(TI) crystal, the lower curve is liquid argon and the middle curve is liquid xenon. The abscissa on the right side shows the value of W_{ph} .

HAN, Ke (SJTU)

Aprile et al_2006_Noble Gas Detectors

FAST PULSE TIMING

PULSE TIMING COMPARISON

HAN, Ke (SJTU)

- readout directly with PMT/SiPM
- visible range.

SUMMARY

► NLs are detector medium with great scintillation and ionization properties

HAN, Ke (SJTU)

Relative easy auxillary requirements (cost, cryogenics)

