The story so far...

- Previously in calculation of the BMR of the ECAL-coil-HCAL configuration...
 - BMR was calculated from a simple Gaussian fit
- While working on the reproduction I found out...
 - The shape of the ARBOR mass is not symmetric
 - The maxima of the mass shifts higher as the gap between the CALs widen
- I was adviced to...
 - Reset the HCAL calibration using the K_L^0
- So today I want to show...
 - My try on the calibration reset using the K_L^0
 - A bit of comparison with the $H\nu\nu$ sample

K_L^0 10GeV uniform direction: $W_{coil} = 90$ mm; no additional gap

Description of the Kaon ptcl gun

- OK, I see that the calibration is scaling the HCAL energy.
- I thought ARBOR UdP energy [3>GeV, !(photon || Ks || n || charged)] should be the main variable as the calibration guide.
- However, it seems like the HCAL calibration doesn't matter.
- Other notes: Loss of E due to interaction with the coil?
 - Just assigning a picked number to make the shapes match sounds artificial to me.
 - If it is a temporary measure to compensate for the interaction, I get it.
 - It not being directly related to the detector's reading should be considered in the future.

$H\nu\bar{\nu}$: $W_{coil} = 90$ mm; no additional gap: $|\cos\theta_{JET}| < 0.85$

- Thinnest coil among considerations in the BMR study with no extra gaps
- M(ARBOR) with default 'seems to' match well with the reference
- However tends to have slight tail on the left-end of the peak

• Differences noticeable with HCAL energies (identical @ ECAL)

Summary

- Been a good chance to read over the CEPC SW codes for me.
- I will try adjusting the HCAL calibration for the Higgs samples and see what happens.
 - Q: from this morning, IHEP computing seems stuck. Is it OK for you?
- Anyway to see what happens to the energy @ coil?
- Firm plans for now
 - Reproduce plots and investigate for other configurations (varying empty gaps, coil width)

BACKUP

KL comp. some other vars

$gg(H\nu\bar{\nu})$: REF vs. Cal_HCAL 0.110

BACKUP BACKUP

..... $R_{L^2}^2$ N_c = 90 mm, G_{pc} = 0 mm, C_{prob} = 0.090

----- K_{L}^{0} : N_{c} = 90 mm, G_{gc} = 0 mm, C_{gchL} = 0.110

----- K_{L}^{0} : W_c = 90 mm, G_{EC} = 0 mm, C_{BCAL} = 0.120

