

Compton Polarimeter for CEPC

Shanhong CHEN

On behalf of the BEMS team

CEPC Physics and Detector Plenary Meeting

Outline

- Motivation of CEPC Z-pole polarized beam program
- Compton Polarimeter for CEPC
- The measurements of beam transverse polarization(Z pole)
- The toy MC simulations
- The fit results of transverse polarization
- Discussion & Summary

Motivation of CEPC Z-pole polarized beam program

- Transversely polarized beams in the ARC
 - Beam energy calibration via the resonant depolarization technique(Accuracy 10^{-6})
 - Essential for precision measurements of Z and W properties
 - At least 5% ~ 10% transverse polarization, for both e+ and e- beams

• Longitudinally polarized beams at IPs

- Beneficial to colliding beam physics programs at Z, W and Higgs(weak interactions & spin structure of particle)
- ~50% or more longitudinal polarization is desired, for one beam, or both beams

Compton Polarimeter at CEPC(Z pole)

RI

Discuss the system layout(for transverse polarization)

• Prospects for the Compton polarimeter system:

- Arrange our device in straight sections on the ring.(ensuring not affect the normal operation of beam on the ring)
- The last dipole in the ARC can be used as our bending magnet for our Compton polarimeter.
- Note that: the layout above is only aimed at measuring transverse polarization, the longitudinal polarimeter must located between two spin rotators(will discuss in the future)

△ Compton Polarimeter

Draft distance(Our Preliminary design):

- $L_1 = 60m$; $L_2 = 40m$
- Meaning that after dipole the scattered particle will drift 40m 28/2 = 16m

Compton Polarimeter at CEPC(Z pole)

The distribution of scattered electrons

• A toy MC

$$X_e = \sigma'_x L_1 + \frac{L_1}{\gamma} \sqrt{u(\kappa - u)} \cos\varphi + u\theta_0 L_2$$
$$Y_e = \sigma'_y L_1 + \frac{L_1}{\gamma} \sqrt{u(\kappa - u)} \sin\varphi$$

Where σ'_x / σ'_y are horizontal and vertical electron angle ; L_1 :Distance between IP and detector; L_2 :Distance between Dipole and detector; $u = \frac{\omega}{\varepsilon}$ (the ratio of energy of scattered photons and scattered electrons); $u \in [0, \kappa]$

The detector resolution has been considered in MC simulation

 $X \sim smear(X_e, 202.07 \mu m)$ $Y \sim smear(Y_e, 7.2168 \mu m)$

The active dimension of detector : $140mm \times 1mm$ The pixel size : $700\mu m \times 25\mu m$ The pixel number : 200×40 The resolution of the detector($\sqrt{12}$) : $202.07\mu m \times 7.2168\mu m$

6

Compton Scattering cross section

• The fit function----Analyzing power $\Pi(Xe)$

• The distribution of scattered electrons depends on electron polarization(ζ) and laser polarization(ξ)

$$d\sigma_{0} = \frac{r_{e}^{2}}{(1+u)^{3}\sqrt{1-x^{2}-y^{2}}} \left(1+(1+u)^{2}-4\frac{u}{\kappa}(1+u)\right) dxdy$$
$$d\sigma_{\parallel} = \frac{\xi_{0}\zeta_{0}r_{e}^{2}}{\kappa(1+u)^{3}\sqrt{1-x^{2}-y^{2}}}u(u+2)\left(1-2\frac{u}{\kappa}\right) dxdy$$
$$d\sigma_{\perp} = -\frac{\xi_{0}\zeta_{\perp}r_{e}^{2}}{(1+u)^{3}\sqrt{1-x^{2}-y^{2}}}uy dxdy$$

Ref: Nickolai Muchnoi, "FCC-ee polarimeter," arXiv e-prints , arXiv:1803.09595 (2018).

$$x = \frac{(X_e - \sigma'_x L_1) - \frac{\kappa}{2} \theta_0 L_2}{\frac{\kappa}{2} \sqrt{(\frac{L_1}{\gamma})^2 + (\theta_0 L_2)^2}} \qquad y = \frac{Y_e - \sigma'_y L_1}{\frac{L_1}{\gamma} \frac{\kappa}{2}} \qquad < u > = \frac{\theta_0 L_2}{\sqrt{\left(\frac{L_1}{\gamma}\right)^2 + (\theta_0 L_2)^2}} \frac{\kappa}{2} x + \frac{\kappa}{2}$$

Note that: In our simulation, we consider laser beam has no linear polarization and electron beam has no longitudinal polarization

• The method

- 1. Obtain the 2D distribution scattered electrons
- ▶ 2. Projection
 - Projection onto the X-axis and add up the Y coordinates of each X bin
- ► 3. we fit the asymmetry:
 - $\Delta < y > |_{Xe} = \zeta_{\perp} \Pi(Xe)$
 - Where the transverse polarization ζ_{\perp} is fit parameter

• About the statistics error and fit range

• For statistic error, 0.15% for 2E7, 0.04% for 2E8.

? The deviation between the fitting result and the true value: (1) The value of the $\langle Y \rangle$ is obtain by each bin; (2) smear due to detector resolution

9

• The luminosity for continuous lasers

$$\mathfrak{T} = \frac{1 + \cos\theta_0}{\sqrt{2\pi}} \frac{I_e}{e} \frac{P_L \lambda}{hc^2} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\sin\theta_0} \approx \frac{2}{\sqrt{2\pi}} \frac{I_e}{e} \frac{P_L \lambda}{hc^2} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\theta_0}$$

Par.	Unit	Physics meaning	CEPC (Z pole)
I _e	A=C/s	mean electron current	461mA
P_L	W=J/s	power of the laser	1.0W
λ	m	Wavelength of laser	1.002µm(1.24eV)
σ_e/σ_γ	m	Rms beam size	$\sigma_{\gamma} = 160 \mu m$
h	J/s	Planck constant	$6.626 \times 10^{-34} J \cdot s$
С	m/s	Light speed	$3 \times 10^8 m \cdot s$
X	$cm^{-2}s^{-1}$	luminosity	$2.56 \times 10^{30} cm^{-2} \cdot s^{-1}$
σ	barn	Cross section	393.5 <i>m</i> b
Max.rate	s ⁻¹	Compton scattering event rate	$1.0088 \times 10^6 s^{-1}$

• A 5%/~10% polarization level is expected to be measured in a 20s with an relative accuracy of about 1.4%.

• About the active detector dimension

The active dimension of detector : $140 \text{m}m \times 1mm$

The relationship between pixel size and uncertainty									
X			Y						
Pixel size	number	Fit result	Pixel size	number	Fit result				
175µm*25µm	800*40	0.99642 ± 0.00139	700µm*25µm	200*40	0.99643 ± 0.00139				
350µm*25µm	400*40	0.99639 ± 0.00139	700µm*50µm	200*20	0.99642 ± 0.00139				
700µm*25µm	200*40	0.99632 ± 0.00139	700µm*100µm	200*10	0.99639 ± 0.00139				
1400µm*25µm	100*40	0.99612±0.00139	700µm*200µm	200*5	0.99637±0.00139				
2800µm*25µm	50*40	0.99530 ± 0.00139	****	****	****				

The fit result vs pixel size

Discussion & Summary

- Compton Polarimeter is the clear technique of choice for electron polarization at CEPC
 - High precision (~1.4%) has been achieved in 20s time
 - The resolution of detector and the beam angle have been considered in our Toy MC
 - The measurement of polarization has low requirements for detector(different from calibrate the beam energy)
- The systematic error may be from : 1) the uncertainty of beam energy; 2) layout of drift distance and magnet; 3) The Angle of collision between laser beam and electron beam;
 (4) error from detector (A full simulation by Geant4 would be desirable to study the systematics uncertainty.
- The measurement of longitudinal polarization by Compton polarimeter are going on~

Compton polarimeter

β function

 $\beta_x = 121m$ $\beta_y = 25m$

About bending angle

• 推导偏转角和偏移量

- □ 偏转角等于圆心角 bending angle: $\theta 1 = \theta 2 = \frac{l}{R}$
- **口** 偏移量 $x: R^2 = L^2 + (R x)^2$

$$\square Bqv = mv^2/R$$

$$E = mc^2 \rightarrow mc = E/c$$

$$R = \frac{mv^2}{Bqv} = \frac{mv}{Be} = \frac{E}{Bec}$$

$$= \frac{45.5 * 10^9 eV}{0.01867 T \times e \times 3 * 10^8 m/s}$$

$$\square \ \theta = \frac{l}{R} = 3.4467 mrad$$

Inverse Compton scattering cross section

$$d\sigma_{\perp} = -\frac{\xi_{\circlearrowright}\zeta_{\perp}r_e^2}{\kappa^2(1+u)^3} \qquad 2u\sqrt{u(\kappa-u)}\cos(\varphi-\phi_{\perp}) \qquad du \, d\varphi.$$

Decide the dimension of detector

Laser energy

$$Xe_{max} \approx \kappa \theta_2 L_2 = \frac{4\omega_0 E_e}{m_e^2} \theta_2 L_2 = \frac{4\omega_0}{m_e^2} (lBec) L_2$$
Drift distance

$$Ye_{max} \approx \frac{L_1}{\gamma} \times \frac{\kappa}{2} = \frac{L_1 * \frac{4\omega_0 E_e}{m_e^2}}{2\frac{E_e}{m_e}} = \frac{2\omega_0 L_1}{m_e}$$

18

 $\Pi(Xe)$

 $\Pi(x) = \frac{\int y \frac{d\sigma_{\perp}}{dxdy} dy}{\int \frac{d\sigma_{0}}{dxdy} dy}$

we use the $y = \sqrt{1 - x^2} \sin\theta, \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\int y \frac{d\sigma_{\perp}}{dxdy} dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{r_e^2}{(1+u)^3 \sqrt{1-x^2-y^2}} uy^2 dy = \frac{ur_e^2}{(1+u)^3} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{y^2}{\sqrt{1-x^2-y^2}} dy = \frac{(1-x^2)ur_e^2}{(1+u)^3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\theta^2 dy = \frac{\pi(1-x^2)ur_e^2}{2(1+u)^3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\theta^2 dy$$

$$\int \frac{d\sigma_0}{dxdy} dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{r_e^2}{(1+u)^3\sqrt{1-x^2-y^2}} \left(1+(1+u)^2 - 4\frac{u}{\kappa}(1+u)(1-\frac{u}{\kappa})\right) dy = \frac{\pi r_e^2 \left(1+(1+u)^2 - 4\frac{u}{\kappa}(1+u)(1-\frac{u}{\kappa})\right)}{(1+u)^3}$$

•
$$\Pi(x) = \frac{(1-x^2)u}{2(1+(1+u)^2 - 4\frac{u}{\kappa}(1+u)(1-\frac{u}{\kappa}))}$$

•
$$x = \frac{(X_e - \sigma'_x L_1) - \frac{\kappa}{2}\theta_0 L_2}{\frac{\kappa}{2}\sqrt{(\frac{L_1}{\gamma})^2 + (\theta_0 L_2)^2}}$$

•
$$y = \frac{Y_e - \sigma'_y L_1}{\frac{L_1 \kappa}{\gamma \cdot 2}}$$

•
$$u(Xe) = \frac{2(X_e - \sigma'_x L_1)\theta_0 L_2 + \kappa(\frac{L_1}{\gamma})^2}{2((\frac{L_1}{\gamma})^2 + (\theta_0 L_2)^2)}$$

$$\Pi(Xe) = \frac{L_1}{\gamma} \frac{\kappa}{2} \left(\frac{1 - \left(\frac{(X_e - \sigma'_x L_1) - \frac{\kappa}{2}\theta_0 L_2}{\frac{\kappa}{2}\sqrt{(\frac{L_1}{\gamma})^2 + (\theta_0 L_2)^2}}\right)^2}{2\left(1 + (1 + u)^2 - 4\frac{u}{\kappa}(1 + u)(1 - \frac{u}{\kappa})\right)} \right)$$

CDR

 Table 4.3.3.5: Parameters of the dual aperture dipole.

Beam center separati	on [mm]	350		
Magnetic length [m]		28.686		
Magnetic strength [C	is]	373.4		
Gap [mm]		70		
	Number	The magnetic strength o	of the dipole located	
Coil	Shape	in last is $\frac{1}{2}B = \frac{373.4Gs}{2} = 0.01867T$		
Con	Material	Aluminum		
	Conductor specs. [mm]	30×54		
Current [A]		1058		
Current density [A/mm ²]		0.67		
Resistance [mΩ]		2.44		
Voltage [V]		2.58		
Power consumption [kW]		2.73		
	Loop number	1		
	Pressure drop [kg/cm ²]	6		
Cooling water	Velocity [m/s]	1.75		
	Flux [l/s]	0.138		
	Temperature rise [°C]	4.7	20	

