S.P. & C.Plumberg PRC(2019) S.P. & C.Plumberg PRC(2018) S.P. PRC (2020) S.P. & R.Steinhorst, PRC (2020) S.P. & C.Plumberg, submitted to PRC (2020)

Extracting the Diffusivity of the QGP Scott Pratt Department of Physics & Astronomy ...

Properties of the QGP

- 1. Eq. of State
- 2. Chemistry (charge fluctuations)
- 3. Chiral Symmetry Restoration

Transport Coefficients

- 4. Viscosity (shear & bulk)
- 5. Diffusivity & Conductivity (light / heavy quark)
- **Electromagnetic Opacity & Emissivity** 6.
- 7. Gluonic Opacity and Emissivity (jet quenching)

Properties of the QGP

Eq. of State

- 2. Chemistry (charge fluctuations)
- 3. Chiral Symmetry Restoration

Transport Coefficients

- 4. Viscosity (shear & bulk)
- Diffusivity & Conductivity (light / heavy quark) 5.
- **Electromagnetic Opacity & Emissivity** 6.
- **Gluonic Opacity and Emissivity (jet quenching)**

GOAL: Determine diffusivity / conductivity of light quarks

experimental progress

Properties of the QGP

- Eq. of State
- **Chemistry (charge fluctuations)** 2.
- 3. Chiral Symmetry Restoration

Transport Coefficients

- 4. Viscosity (shear & bulk)
- **Diffusivity & Conductivity (light / heavy quark)** 5.
- **Electromagnetic Opacity & Emissivity** 6.
- **Gluonic Opacity and Emissivity (jet quenching)**

- Charge balance functions also important for: CME background

Charge balance functions are principal tool

Background for fluctuations for phase transitions

Definition of Diffusivity $\vec{j}_{a} = -D_{ab}\nabla\rho_{b}, \mathbf{3x3 \text{ matrix (colors)}} \\ = -\sigma_{ab}\nabla(\mu_{b}/T),$ $\sigma = \chi D,$ $\chi_{ab} = \langle \delta Q_a \delta Q_b \rangle / V = \partial \rho_a / \partial (\mu_b / T)$ susceptibility

 $\sigma_{ab} = \frac{1}{2T} \int d^4x \, \langle \{j_a(0), j_b(x)\} \rangle$

Kubo Relation

difficult for lattice gauge theory

No Clear Consensus

G.Aarts et al, JHEP (2015) J.Ghiglieri et al, JHEP (2018) **G.Policastro et al, JHEP (2002)**

Don't know origin?

Still must know time!

 $B(r_2|r_1) \equiv rac{N_{+-}(r_1,r_2) - N_{++}}{N_{+-}(r_1,r_2) - N_{++}}$ $2N_+(r_1)$

Construct Balance Function (like-sign subtraction)

$$rac{(r_1,r_2)}{r_1}+rac{N_{-+}(r_1,r_2)-N_{--}(r_1,r_2)}{2N_{-}(r_1)}$$

Can't measure positions?

$B(r_2|r_1) \equiv rac{N_{+-}(r_1,r_2)-N_{++}(r_1,r_2)}{2N_{+}(r_1)} + rac{N_{-+}(r_1,r_2)-N_{--}(r_1,r_2)}{2N_{-}(r_1)}$

 $\Delta \phi_p$

mapping relies on collective flow thermally smearing of spatial info

Define C'_{ab} (ignore self-correlation)

charge conservation:

- $C_{ab}(\vec{r_1},\vec{r_2}) = \langle \delta \rho_a(\vec{r_1}) \delta \rho_b(\vec{r_2}) \rangle$ C'_{ab} is balance function numerator $= \chi_{ab} \delta(\vec{r_1} - \vec{r_2}) + C'_{ab}(\vec{r_1}, \vec{r_2}),$
 - $0 = \int d^3r_1 \, \left[C_{ab}'(ec{r_1},ec{r_2}) + \chi_{ab}(ec{r_1})\delta(ec{r_1}-ec{r_2})
 ight]$
 - χ_{ab} from lattice for local chemical equilibrium (could be set dynamically)

 $(\partial_t - D_1 \nabla_1^2 - D_2 \nabla_2^2) C'_{ab}(t, t)$ $S_{ab}(t,r_1,r_2)$

Source Function for C'_{ab}

$$egin{aligned} ec{r}_1,ec{r}_2) &= S_{ab}(t,ec{r}_1,ec{r}_2) \ &= -\delta(ec{r}_1-ec{r}_2)[\partial_t+
abla\cdotec{v}+ec{v}\cdot
abla]\chi_{ab}(t) \ &pprox s D_t rac{\chi_{ab}(t,ec{r})}{s} \end{aligned}$$

represent correlation by weighted pairs (Monte Carlo) undergoing random walk

In hadron gas: π ,K,p....

$$\delta N_h = n_h q_{h,a} \chi_{ab}^{-1} (T_{\text{interface}})$$

Translates charge indices
to hadron indices

Given T, flow and susceptibility at QGP/hadron interface, $C_{ab}(r_1, r_2) \to B_{hh'}(p_1, p_2)$ $B_{hh'}(p_2|p_1) \equiv rac{N_{h'ar{h}}(p_1,p_2) - N_{h'h}(p_1,p_2)}{N_{h'h}(p_1,p_2) - N_{h'h}(p_1,p_2)}$ $2N_{h'}(p_1)$

Hydro/Simulation Interface

$$rac{p_1,p_2)}{2}+rac{N_{ar{h}'h}(p_1,p_2)-N_{ar{h}'ar{h}}(p_1,p_2)}{2N_{ar{h}'}(p_1)}$$

Adjustable Parameters

- **2.** σ_0 spread in rapidity at τ_0 = 0.6 fm/c
- 3. $T_h = 155 \text{ MeV}$

1. Diffusion Constant D(T) (multiples of lattice values)

Diffusion = Random walk

Monte Carlo procedure:

- A) Overlay with hydro evolution to create $S_{ab}(t, \vec{r})$
- B) Generate partners (uu,dd,ss,ud,us,ss) proportional to $S_{ab}(t, \vec{r})$ with weights
- C) Move particles in random directions punctuated by re-directioning according to τ_{coll}
- **D)** Translate δQ_a to δN_h at hyper surface
- E) Collide (fixed σ) and decay particles
- Combine decay products with those from partner F)
- G) Correlations created during hadronic phase: create uncorrelated hadrons, run through cascade, combine ALL particles to create BF
- H) Add contributions from (E) and (F)
- Fold with acceptance/efficiency
- Test sum rules J)

ALGORITHM

 $au_{
m coll} = 6D$

ALGORITHM

Correlations from Hydro: - Depends of D and σ_0 - Only a few hours of CPU - track charges from same source point **Correlations from Cascade** - Weeks of CPU — One hydro event (independent of D, σ_0)

- Millions of cascade events

5	5	C	ł	
5	D	¢	2	
1	5	¢)	
1	D	ç	2	
3	5	ç	>	
)	ò	¢	ý	
2	5	C	1	
2	þ	ç	5	
	5	¢	,	
	b	c	5	

ALGORITHM

TYPE II

Model input Hydro history

VISHNU Hydro, Au+Au (200A GeV)

Chris Plumberg

Model input Susceptibility

BW Collaboration

Model input Diffusivity

Lattice: Diffusivity/Conductivity, $D_{E}(T)$, $\sigma(T)$ 360 G.Aarts, C.Allton, A.Amato, P.Guidice, S.Hands & J.I.Skullerud, JHEP(2015)

Experimental Acceptance/Efficiency

Gary Westfall MSU

Jinjin Pan Wayne State

Source Function

- First surge when QGP is created
- uu,dd continuously created
- ss nearly steady
- ud,us,ds at hadronization

Diffusive Trajectories

Model vs. STAR

Unidentified Particles

TAR Preliminary

> Model, Type 1 + Type 2 Type 1 (dashes, hydro) Type 2 (dots, cascade)

Model vs. STAR

- Identified particles (vs. Δy)
- pK is off
- pp is off (annihilation missing)

Model vs ALICE

Thesis of Jin-Jin Pan

Binned by Δy

Type 1 + Type 2 Type 1 (hydro) Type 2 (cascade)

Sensitivity to Diffusivity multiples of Lattice D(T)

annihilation affects results

O-5% centrality, Au+Au (200A GeV) simulated STAR acceptance

Sensitivity to Diffusivity

- $\Delta \phi$ binning reduces dependence on σ_0
- kaons or protons best suited:
- χ_{ss}/s roughly constant \approx only phi contributes from final state
- χ_{BB}/s roughly constant annihilation an issue

Sensitivity to Diffusivity

Extract D ~ $\pm 50\%$? But much work needed: • φ contribution to kaon B.F. - BF binned by Qinv absorption of strangeness into baryons -look at pK, KA BFsstrangeness annihilation — multiplicities and BF vs Δy

Binned by $\Delta \phi$ Lattice diffusion looks OK

Model vs.

ALICE

Type 1 + Type 2 Type 1 (hydro) Type 2 (cascade)

Model vs. ALICE

Lower diffusivities look better

Better Focus on Diffusivity Analyze $B(\Delta \phi)$, Cutting on large Δy

Eliminate Effects from:

- HBT
- Resonant Decays
- Annihilation
- Experimental 2-track resolution
- $\Delta y \gtrsim 0.75$ should be good enough

Analyze
$$B(\Delta \phi)$$

Cutting on large Δy

$$B_{1}(\Delta y) \equiv \int d\Delta \phi B(\Delta y, \Delta \phi) \cos(\Delta \phi)$$
$$B(\Delta y) = \int d\Delta \phi B(\Delta y, \Delta \phi)$$

Type II only provides noise for $\Delta y \gtrsim 1$ Robust extraction of diffusivity for this window

Summary

- Charge correlations (order Q²) calculated in "standard model"
- STAR/ALICE data consistent (mostly) with early chemical equilibration K^+K^- , $p\bar{p}$, $\pi^+\pi^-$ systematics reproduced (STAR *pK* normalization off & ALICE KK normalization off)
- Diffusivity can be extracted from BFs binned by $\Delta \phi$ cut on large Δy High statistics STAR & ALICE data coming
- Many opportunities for progress Both theoretical and experimental Both for diffusivity and for chemistry Similar to femtoscopy

Office of Science

Bonus Slides

- CME background
- Skewness/kurtosis background
- Theory for higher-order charge fluctuations

Charge Conservation and Q^3 , Q^4 correlations b) Perform canonical ensemble on sub-volumes & superimpose on blast wave (crude)

S.P. and R.Steinhorst **PRC (2020)**

BONUS: Charge conservation and Q^3 , Q^4 correlations (formalism) a) Integrate n-point correlations to obtain skewness & kurtosis S.P., PRC (2020) a, x_1 2 POINT:

 b, x_2 a, x_1 a, x_1 3 POINT: b, x_2 c, x_3 c, x_2 a, x_1 a, x_1 4 POINT: b, x_2 (4 perm.s) b, x_2 c, x_3 c, x_3 d, x_4 d, x_4 a, x_1 b, x_2 (6 perm.s) c, x_3 d, x_4

 $b, x_2 \text{ (3 perm.s)}$

Evidence of early chemical equilibrium

• $p\bar{p}, K^+K^-$ BFs broader than $\pi^+\pi^-$ BFs • $\sigma_0 > 0$

