Inclusive search for Ξ_{bc}

Yang Guo He(杨国贺)
Huazhong University of Science and Technology
华中科技大学

合作者:秦溱、施禹基、王伟、于福生、朱瑞林

PQCD Workshop 2021, 青岛 (July 11-13, 2021)

CONTENT

- It is important to study Ξ_{bc}
- We propose a inclusive strategy to find Ξ_{bc}
- We will show it is reachable at LHCb

The quark model

Murry Gell-Mann 1929,9,15—2019,5,24

George Zweig 1937,5,30---

'Three quarks for muster mark' (Finnegans wake)

The exotic state

- Observation of tetraquarks Zc(3900)
 [BESIII, Phys.Rev.Lett. 110 (2013) 252001]
 The Physics 2013 "Highlights of the Year" (rank 1st)
- Observation of pentaquarks Pc
 [LHCb, Phys.Rev.Lett. 115 (2015) 072001]

The Physics World 2015 "top-10 breakthroughs"

- Observation of a double-charm baryon Ξ_{cc}^{++} [LHCb, *Phys.Rev.Lett.* 119 (2017) 112001]
 - 国家科技部"2017年度中国科学十大进展"

"Periodic table of the hadrons"

 Z_c , P_c : a new period

 Ξ_{cc} : a new main group

Beyond stamp collecting

- Because of color confinement, properties of quarks are studied via hadrons
- Different types of hadrons provide different visual angles into QCD and also electroweak dynamics

e.g., doubly-heavy baryons have a unique structure, a bound state of a heavy 'diquark' and a light quark

analogous to a heavy meson, but also different: bosonic, sizable heavy element

e.g., the double-bottom tetraquark $T_{[qq']}^{\{bb\}}$ is expected to be below threshold and thus decay weakly

nold b c

[Eichten, Quigg, 1707.09575]

Who is to be shot next?

T_{cc}: [QQ, F.S.Yu,2008.08026]

 Ξ_{bc} : this talk

 $\sigma(\Xi_{bc}) = 35 \text{ nb}$ at 14 TeV LHCb

[X.G.Wu, et al 1101.1130]

	2011	2012	2018	2023	2029	2035
LHCb	Run I		Run II	Run III	Run IV	Run V
Integrated luminosity	1 fb ⁻¹	3 fb ⁻¹	9 fb ⁻¹	23 fb ⁻¹	50 fb ⁻¹	300 fb ⁻¹

Trillions of Ξ_{bc} will be produced @ LHCb Run3.

Difficulties in experimental searches

- Production rate
- Detection efficiency small exclusive branching ratios

channels	Γ/ GeV	\mathcal{B}	channels	$\Gamma/~{ m GeV}$	\mathcal{B}
$\Xi_{bc}^{0}\to \Sigma_{b}^{-}\pi^{+}$	6.13×10^{-15}	8.66×10^{-4}	$\Xi_{bc}^0 o \Sigma_b^- \rho^+$	2.58×10^{-14}	3.64×10^{-3}
$\Xi_{bc}^0 \to \Sigma_b^- K^{*+}$	1.29×10^{-15}	1.82×10^{-4}	$\Xi_{bc}^0 \to \Sigma_b^- K^+$	4.62×10^{-16}	6.53×10^{-5}
$\Xi_{bc}^0 \to \Xi_b^- \pi^+$	1				
$\Xi_{bc}^0 \to \Xi_b^- K^{*+}$	7.47×10^{-15}	1.06×10^{-3}	$\Xi_{bc}^0 o \Xi_b^- K^+$	8.12×10^{-15}	1.15×10^{-3}
$\Xi_{bc}^{0} \rightarrow \Xi_{b}^{\prime-}\pi^{+}$	5.47×10^{-14}	7.73×10^{-3}	$\Xi_{bc}^0 \to \Xi_b^{\prime-} \rho^+$	2.01×10^{-13}	2.83×10^{-2}
$\Xi_{bc}^0 \rightarrow \Xi_b^{\prime-} K^{*+}$	8.53×10^{-15}	1.21×10^{-3}	$\Xi_{bc}^0 \to \Xi_b^{\prime-} K^+$	3.82×10^{-15}	5.40×10^{-4}

[W. Wang, F.S. Yu, Z.X. Zhao, 1707.02834]

First experimental attempt

$$\frac{\sigma(\Xi_{bc}^{0})}{\sigma(\Lambda_{b}^{0})} \frac{B(\Xi_{bc}^{0} \to \Lambda_{c}^{+} \pi^{-})}{B(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \pi^{-})} < [0.5, 2.5] \times 10^{-4}$$

$$\frac{\sigma(\Xi_{bc}^{0})}{\sigma(\Xi_{b}^{0})} \frac{B(\Xi_{bc}^{0} \to \Xi_{c}^{+}\pi^{-})}{B(\Xi_{b}^{0} \to \Xi_{c}^{+}\pi^{-})} < [1.4,6.9] \times 10^{-3}$$

[LHCb, 2104.04759]

A novel approach — inclusive Ξ_{bc} search

Generally, inclusive decays have (1) larger branching ratios but (2) lower detection efficiencies

Basically impossible at hadron colliders

• However, for $\Xi_{bc} \to \Xi_{cc} + X$, the efficiency can be large by making use of the inform of displaced vertex, because Ξ_{bc} can only decay weakly

Inspired by the proposal to search for Ξ_{bb} via $\Xi_{bb} \rightarrow B_c + X$ [Gershon,Poluektov,1810.06657]

- Ξ_{bc} is (almost) the only source for displaced Ξ_{cc} ' s
- The $B_c \to \Xi_{cc} + X$ decay is highly suppressed

Calculation of $\Xi_{bc} \to \Xi_{cc} + X$

• First important fact: $\Xi_{bc} \to \Xi_{cc} + X = \Xi_{bc} \to X_{cc}$

 X_{cc} include excited states of Ξ_{cc} , which still decay into Ξ_{cc}

• If we regard the heavy diquarks χ_{bc} and χ_{cc} as elementary objects, the decay at the quark-diquark diquark level is

$$\chi_{bc} \to \chi_{cc} + \ell^- \overline{\nu}, \chi_{cc} + \overline{q} q'$$
 It is reasonable because $r_{QQ'} \sim 1/(m_Q v) \ll 1/\Lambda_{QCD}$ [e.g.,Brodsky,Guo,Hanhart,Meissner,1101.1983]

• By making use of OPE, the inclusive decay width can be expanded by powers of $1/M_{OO'}$ within the Heavy Diquark Effective Theory

[Y.J.Shi, W.Wang, Z.X.Zhao,Meissner,2002.02785]

At the leading power

$$\Gamma(\Xi_{bc} \to X_{cc}) = \Gamma(\chi_{bc} \to \chi_{cc} + \ell^{-}\overline{\nu}, \chi_{cc} + \overline{q}q') + \mathcal{O}(1/M_{QQ'})$$

Calculation of $\Xi_{bc} \to \Xi_{cc} + X$

Least recoil

• The key issue is the 2-diquark-2-fermion interaction vertex, i.e. the $\chi_{bc} \to \chi_{cc}$ diquark current

$$\langle 0|X_{cc}(v,\epsilon)\ \bar{c}\gamma^{\mu}P_Lb(0)\ X_{bc}^{\dagger}(v',\epsilon')|0\rangle = \langle 0|X_{cc}(v,\epsilon)\ X_{cc}^{\dagger}\Gamma^{\mu}X_{bc}(0)\ X_{bc}^{\dagger}(v',\epsilon')|0\rangle$$

- Assuming the heavy quark symmetry, the diquark current is matched from the quark current to be $\Gamma^{\mu}_{\rho\sigma} = \left[i\left(g_{\rho\sigma}\overset{\leftarrow}{\partial^{\mu}} g^{\mu}_{\rho}\overset{\leftarrow}{\partial}_{\sigma} g_{\rho\sigma}\overset{\leftarrow}{\partial^{\mu}} + \partial_{\rho}g^{\mu}_{\sigma}\right) + \epsilon^{\mu}_{\nu\rho\sigma}\overset{\leftarrow}{\left(\overset{\leftarrow}{\partial^{\nu}} \partial^{\nu}\right)}\right]\sqrt{\frac{1}{2}}\mathcal{I}(m_{c}|\mathbf{v}' \mathbf{v}|)$ with $\mathcal{I}(\dots) \equiv 1$
- If we consider the heavy quark mass effects, the structure is more complicated, and $\mathcal{I}(...)$ is given by the right curve
- The model matching is to be improved

Calculation of $\Xi_{bc} \to \Xi_{cc} + X$ (Preliminary)

Numerical result for the decay width

$$\Gamma(\Xi_{bc} \to \Xi_{cc} + X) = (3.9 \pm 0.1 \pm 1.0 \pm 1.2) \times 10^{-13} \, GeV$$

Uncertainties from Quark mass, model dependence, power correction

The branching ratio is

$$B(\Xi_{bc} \to \Xi_{cc} + X) \approx 12\% \times \frac{\tau_{\Xi_{bc}}}{200 \text{fs}}$$

• Ξ_{cc}^{++} fragmentation suffers a factor of 1/2

(Assuming the u and d quark saturate the fragmentation)

$$B(\Xi_{bc} \to \Xi_{cc}^{++} + X) = 6\% \times \frac{1}{2} \left(\frac{\tau_{\Xi_{bc}^{+}}}{200 \text{fs}} + \frac{\tau_{\Xi_{bc}^{0}}}{200 \text{fs}} \right) = 6\% \times \left(\frac{\tau_{\Xi_{bc}^{+}} + \tau_{\Xi_{bc}^{0}}}{400 \text{fs}} \right)$$

Lifetime

93fs <
$$\tau(\Xi_{bc}^0)$$
 < 118 fs, 409 fs < $\tau(\Xi_{bc}^+)$ < 607 fs [H.Y.Cheng, F.R.Xu, 1903.08148]

Search for $\Xi_{bc} \to \Xi_{cc}^{++} + X$ with displaced Ξ_{cc}^{++}

Estimated of signal events

$$N(\Xi_{bc} \to \Xi_{cc}^{++} + X) = N(\Xi_{cc}^{++}) \cdot \frac{2\sigma(\Xi_{bc})}{\sigma(\Xi_{cc})} \cdot B(\Xi_{bc} \to \Xi_{cc}^{++} + X)$$

(Both Ξ_{bc}^0 and Ξ_{bc}^+ decay equally to Ξ_{cc}^{++} and thus Identical detection efficiency)

Three ingredients:

- 1. Number of signals of Ξ_{cc}^{++}
- 2. Production ratio $\sigma(\Xi_{bc})/\sigma(\Xi_{cc})$
- 3. Branching fraction of inclusive decay of $\Xi_{bc} \to \Xi_{cc}^{++} + X$

Search for $\Xi_{bc} \to \Xi_{cc}^{++} + X$ with displaced Ξ_{cc}^{++}

1. Number of signals of Ξ_{cc}^{++}

J.B.He

• Data of 9 fb⁻¹ Run 1+2

	2011	2012	2018	2023	2029	2035
LHCb	Run I		Run II	Run III	Run IV	Run V
Integrated luminosity	1 fb ⁻¹	3 fb ⁻¹	9 fb ⁻¹	23 fb ⁻¹	50 fb ⁻¹	300 fb ⁻¹

	LHCb			Belle II
Decay mode	$23 {\rm fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300 {\rm fb}^{-1}$	$50 \rm{ab}^{-1}$
$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k	<6k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600	

• Events estimated for 23 fb⁻¹ (Run III)

$$\frac{7000}{1600} \times (1600 + 600) \approx 10000$$

Z.W.Yang

Search for $\Xi_{bc} \to \Xi_{cc}^{++} + X$ with displaced Ξ_{cc}^{++}

2. Production ratio $\sigma(\Xi_{bc})/\sigma(\Xi_{cc})$

[X.G.Wu et al, 1101.1130]

TABLE VI. Comparison of the total cross section (in units nb) for the hadronic production of Ξ_{cc} , Ξ_{bc} , and Ξ_{bb} at $\sqrt{S} = 7.0$ TeV and $\sqrt{S} = 14.0$ TeV, where $[{}^3S_1]$ and $[{}^1S_0]$ stand for the combined results for the diquark in spin-triplet and spin-singlet states, respectively. In the calculations, we adopt $p_T > 4$ GeV and |y| < 1.5.

	Ξ_{cc}		7	Ξ_{bc}	Ξ_{bb}	
	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$
$[^3S_1]$	38.11	69.40	16.7	28.55	0.503	1.137
$[{}^{1}S_{0}]$	9.362	17.05	3.72	6.315	0.100	0.226
Total	47.47	86.45	20.42	34.87	0.603	1.363

$$\sigma(\Xi_{bc})/\sigma(\Xi_{cc}) \approx 40\%$$

Search for
$$\Xi_{bc} \to \Xi_{cc}^{++} + X$$
 with displaced Ξ_{cc}^{++} (Preliminary)

Final number of estimated signal events @ LHCb Run3

$$N(\Xi_{bc} \to \Xi_{cc}^{++} + X) = N(\Xi_{cc}^{++}) \cdot \frac{2\sigma(\Xi_{bc})}{\sigma(\Xi_{cc})} \cdot B(\Xi_{bc} \to \Xi_{cc}^{++} + X)$$

$$= 10^{4} \cdot \frac{N(\Xi_{cc}^{++})}{10^{4}} \times 40\% \cdot \frac{2\sigma(\Xi_{bc})/\sigma(\Xi_{cc})}{40\%} \times 6\% \cdot (\frac{\tau_{\Xi_{bc}^{+}} + \tau_{\Xi_{bc}^{0}}}{400 \text{fs}})$$

$$= 480 \times \frac{N(\Xi_{cc}^{++})}{10^{4}} \cdot \frac{\sigma(\Xi_{bc})/\sigma(\Xi_{cc})}{40\%} \cdot (\frac{\tau_{\Xi_{bc}^{+}} + \tau_{\Xi_{bc}^{0}}}{400 \text{fs}})$$

Small possibility from B_c decays

- The small phase space (0.18 GeV for $\Xi_{cc}\Xi_c$) only allows the processes of B_c
 - $\rightarrow \Xi_{cc}\Xi_{c}$, or $\Xi_{cc}\Xi_{c}\pi$, or $\Xi_{cc}^*\Xi_{c}$, or $\Xi_{cc}\Xi_{c}^*$
- Similar process but with a light spectator quark:

$$Br(B^0 \to \Xi_c^- \Lambda_c^+) = (1.2 \pm 0.8) \times 10^{-3}$$

 $Br(B^- \to \Xi_c^0 \Lambda_c^-) = (0.95 \pm 0.23) \times 10^{-3}$

(0.5 GeV phase space)

Conclusion

• We propose to search for Ξ_{bc} via inclusive $\Xi_{bc} \to \Xi_{cc}^{++} + X$ with a displaced Ξ_{cc}^{++} .

• We calculate $\Gamma(\Xi_{bc} \to \Xi_{cc} + X) = (3.9 \pm 0.1 \pm 1.0 \pm 1.2) \times 10^{-13} \, GeV$.

• We estimate about 480 signal events to be observed @ LHC Run 3.

We hope it is useful.

Thank you