

Global Analysis of charmless two body B/Bs decays in PQCD Approach

Jun Hua

Shanghai Jiao Tong University

11.07.2021

arXiv:2012.15074

CONTENT

Motivation

An auto calculation in PQCD

Global fit for Gegenbauer moments

Summary

1999 —— 2008 SLAC(Babar) 2009 —— CERN(LHCb)

KEKB(Belle)

1999 —— 2010

KEKB(Belle-II)

2018 ——

- B meson decay is an ideal place to study CKM phase angle and CP violation.
- The precision test of Standard Model (SM) will help us to find new physics or search new particles indirectly

Consider a B meson decay process

$$B^0 o\pi^+\pi^-$$

QCD factorization: separating the processes with different energy scales:

$${\cal A} = < M_2 M_3 |{\cal H}_{eff}|B> \ \sim \int \!\! d^4k_1 d^4k_2 d^4k_3 \, {
m Tr} igl[C(t) \Phi_B(k_1) \Phi_{M_2}(k_2) \Phi_{M_3}(k_3) H(k_1,k_2,k_3,t) igr],$$

Wilson coefficients

Non-perturbative, but UNIVERSAL DA

k_T factorization:

The full amplitudes can be factorized as:

Other approaches:

- QCD factorization
- SCET factorization
-

Charmless two-body decays:

B->PP: 34

B->VP: 62

B->VV: 34

Three body:

hundreds of process...

Complicated!!!

PHYSICAL REVIEW D 76, 074018 (2007)

Charmless nonleptonic B_s decays to PP, PV, and VV final states in the perturbative QCD approach

Ahmed Ali¹ and Gustav Kramer²

¹Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany ²II. Institut für Theoretische Physik, Universität Hamburg, 22761 Hamburg, Germany

Ying Li, Cai-Dian Lü, Yue-Long Shen, Wei Wang, and Yu-Ming Wang

Institute of High Energy Physics, CAS, P.O. Box 918(4), 100049, People's Republic of China

(Received 19 March 2007; published 17 October 2007)

How to simplify?

Factorizable

Non-factorizable

According to the Feynman diagram:

According to the

Fermi 4-quark interaction:

Emission

$$b$$
 d
 M_2
 b
 M_3

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \left\{ \sum_{q=u,c} V_{qb} V_{qD}^* \left[C_1 O_1^q + C_2 O_2^q \right] - V_{tb} V_{tD}^* \left[\sum_{i=3}^{10} C_i O_i \right] \right\} + \text{H.c.}$$

3 types

(V-A)(V-A)

 $O_1^q = (\bar{q}_{\alpha}b_{\beta})_{V-A}(\bar{D}_{\beta}q_{\alpha})_{V-A},$

(V-A)(V+A)

(S-P)(S+P)

 $C_1O_1 \sim C_{10}O_{10}$

The decay amplitudes $B \rightarrow M_2 M_3$

$$\langle M_2 M_3 | \mathcal{H}_{eff} | B \rangle = \frac{G_F}{\sqrt{2}} V_{ub} V_{uq}^* \Big[\mathcal{A}_u (B \to M_2 M_3) \Big] - \frac{G_F}{\sqrt{2}} V_{tb} V_{tq}^* \Big[\mathcal{A}_t (B \to M_2 M_3) \Big],$$

SU(3) Flavor Structure:

$$B^- = (1,0,0), \quad \dots \qquad \delta_u$$
 $M_{\pi^+} = M_{
ho^+} = \begin{pmatrix} \overline{u} & \overline{d} & \overline{s} \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ d \\ s \end{pmatrix} \quad \dots \quad \delta_u$

$$\delta_u = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Lambda^d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \cdots$$

$$A_{u}(B \to M_{2}M_{3}) = [F_{e}(a_{1}) + M_{e}(C_{1})]BM_{3}\delta_{u}M_{2}\Lambda_{f}$$

$$C_{2} + 1/3C_{1} + [F_{e}(a_{2}) + M_{e}(C_{2})]BM_{3}\Lambda_{f}Tr[\delta_{u}M_{2}]$$

factorizable non-factorizable

$$\begin{split} B^- &= (1,0,0), \quad \overline{B} = (0,1,0), \quad \overline{B}_s^0 = (0,0,1), \\ M_{\pi^+} &= M_{\rho^+} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad M_{K^+} = M_{K^{*+}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad M_{K^0} = M_{K^{*0}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \\ \sqrt{2} M_{\pi^0} &= \sqrt{2} M_{\rho^0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \sqrt{2} M_{\eta_q} = \sqrt{2} M_{\omega} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad M_{\eta_s} = M_{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ M_{\pi^-} &= M_{\rho^-} = M_{\pi^+}^T, \quad M_{K^-} = M_{K^{*-}} = M_{K^+}^T, \quad M_{\bar{K}^0} = M_{\bar{K}^{*0}} = M_{K^0}^T, \end{split}$$

$$\delta_u = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Lambda_d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \Lambda_s = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad e_Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}.$$

The total amplitudes:

$$\begin{split} M \; &= \; \frac{G_F}{\sqrt{2}} V_{ub} V_{uq}^* \Big[\mathcal{A}_u (B \to M_2 M_3) \Big] - \frac{G_F}{\sqrt{2}} V_{tb} V_{tq}^* \Big[\mathcal{A}_t (B \to M_2 M_3) \Big], \\ A_u (B \to M_2 M_3) \; &= \; \Big[F_e^{LL} (a_1) + M_e^{LL} (C_1) \Big] B M_3 \delta_u M_2 \Lambda_f + \Big[F_e^{LL} (a_2) + M_e^{LL} (C_2) \Big] B M_3 \Lambda_f Tr [\delta_u M_2] \\ & + \; \Big[F_{ann}^{LL} (a_1) + M_{ann}^{LL} (C_1) \Big] B \delta_u M_3 M_2 \Lambda_f + \Big[F_{ann}^{LL} (a_2) + M_{ann}^{LL} (C_2) \Big] B \Lambda_f Tr [\delta_u M_3 M_2], \\ A_t (B \to M_2 M_3) \; &= \; \Big[F_e^{LL} (a_3) + F_e^{LR} (a_5) + M_e^{LL} (C_4) + M_e^{SP} (C_6) \Big] B M_3 \Lambda_f Tr [M_2] \\ & + \; \Big[F_e^{LL} (a_4) + F_e^{SP} (a_6) + M_e^{LL} (C_3) + M_e^{LR} (C_5) \Big] B M_3 M_2 \Lambda_f \\ & + \; \Big[F_e^{LR} (a_7) + F_e^{LL} (a_9) + M_e^{SP} (C_8) + M_e^{LL} (C_{10}) \Big] B M_3 \Lambda_f Tr [e_Q M_2] \\ & + \; \Big[F_e^{SP} (a_8) + F_e^{LL} (a_{10}) + M_e^{LR} (C_7) + M_e^{LL} (C_9) \Big] B M_3 e_Q M_2 \Lambda_f \\ & + \; \Big[F_{ann}^{LL} (a_3) + F_{ann}^{LR} (a_5) + M_{ann}^{LL} (C_4) + M_{ann}^{SP} (C_6) \Big] B \Lambda_f Tr [M_3 M_2] \\ & + \; \Big[F_{ann}^{LL} (a_4) + F_{ann}^{SP} (a_6) + M_{ann}^{LL} (C_3) + M_{ann}^{LR} (C_5) \Big] B M_3 M_2 \Lambda_f \\ & + \; \Big[F_{ann}^{LR} (a_7) + F_{ann}^{LL} (a_9) + M_{ann}^{SP} (C_8) + M_{ann}^{LL} (C_{10}) \Big] B \Lambda_f Tr [e_Q M_3 M_2] \\ & + \; \Big[F_{ann}^{SP} (a_8) + F_{ann}^{LL} (a_{10}) + M_{ann}^{SP} (C_8) + M_{ann}^{LL} (C_9) \Big] B e_Q M_3 M_2 \Lambda_f, \end{split}$$

Vegas

Fit parameters:

CKM phase angle Y

Gegenbauer moments:

$$(a_{2\pi}, a_{4\pi}, a_{1K}, a_{2K}, a_{4K})$$
, $(a_{2\rho}, a_{1K*}, a_{2K*})$
 $twist2 \quad (pseudoscalar meson)$ $twist2 \quad (vector meson)$

$$(a_{2\pi}^{P}, a_{2\pi}^{T}, a_{2K}^{P}, a_{2K}^{T}),$$

twist3 (pseudoscalar meson)

A specific process of two-body B meson decay ——(20 mins each)

How to fit Gegenbauer moments?

Distribution amplitude of Pseudo-scalar meson(twist-2):

$$\phi_P(x) = \frac{f_P}{2\sqrt{2N_c}} 6x(1-x) \left[1 + a_1 C_1^{3/2} (1-2x) + a_2 C_2^{3/2} (1-2x) + a_4 C_4^{3/2} (1-2x) \right]$$

The contribution of Gegenbauer moments can be decomposed:

$$\langle M_2[a_2 + a_4]M_3[a_2]|\mathcal{H}_{eff}|B\rangle$$

= $a_{2,M_2}a_{2,M_3}\langle M_2M_3|\mathcal{H}_{eff}|B\rangle_{22} + a_{4,M_2}a_{2,M_3}\langle M_2M_3|\mathcal{H}_{eff}|B\rangle_{42}$

Then the full amplitude:
$$A = \sum_{m=1}^{\infty} a_n \cdot a_m \cdot \underline{M_{nm}}$$

Database of different PP: 9*9
Gegenbauer moments PV: 9*4*2

Fitted data

Global fit

Least-Squares Fitting (lsq)

- Minimizes the summed χ^2 of residuals
- The summed square of residuals is defined as: $\chi^2 = \sum_{i=1}^n \frac{(y_i \hat{y}_i)^2}{\sigma_y^2}$

Channel Experimental data $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

fit parameter (Gegenbauer)

Experimental error

Bayesian analysis

- To stabilize a complicate non-linear lsq fit, one can use bayesian analysis.
- The modified residuals is defined by:

$$\chi_m^2 = \chi^2 + \chi_{prior}^2$$
, $\chi_{prior}^2 = \sum_n \frac{(a_n - \tilde{a}_n)^2}{\tilde{\sigma}_{a_n}^2}$,

Refers to QCDSR[1]

 $\tilde{a}_n \pm \tilde{\sigma}_{a_n}^2$ is chosen by physical background at reasonable range.

[1]. Ball P, Zwicky R, Phys. Rev. D 71, 014015 (2006)

 ω_b in two body B_s decay depends on specific process, can not extracted by fitting database

Method of extracting ω_{b_s} in two body B_s decay:

We compare the experimental data with PQCD prediction of running ω_{b_s} .

$$B_{S} \to K^{+}K^{-}$$

$$B_{S} \to K^{+}\pi^{-}$$

$$B_{S} \to K^{0}\overline{K}^{0}$$

$$B_{S} \to \pi^{+}\pi^{-}$$

Channel:19 Data:22

channel	data		fit		
Chamler	branching ratio (10^{-6})	$A_{CP}(\%)$	branching ratio (10^{-6})	$A_{CP}(\%)$	
$B^0 o ar K^0 K^0$	1.21 ± 0.16	-60 ± 70	1.23 ± 0.08	0 ± 0	
$B^0 o ar K^0 \pi^0$	9.90 ± 0.50	0 ± 13	8.98 ± 0.19	-4.02 ± 0.48	
$B^0 o K^- \pi^+$	19.6 ± 0.50	-8.3 ± 0.6	20.3 ± 0.36	-8.34 ± 0.36	
$B^0 o \pi^- \pi^+$	5.12 ± 0.19	32 ± 4	5.24 ± 0.17	23.2 ± 2.1	
$B^0 o ho^0 ar K^0$	3.40 ± 1.10	4 ± 20	3.06 ± 0.37	2.853 ± 0.068	
$B^0 o \pi^0 ar K^{*0}$	3.30 ± 0.60	-15 ± 13	1.73 ± 0.10	-6.02 ± 0.6	
$B^0 o \pi^- ho^+/\pi^+ ho^-$	23.0 ± 2.30	$13\pm6/-8\pm8$	23.33 ± 0.8	$-24.3 \pm 1/8.1 \pm 1.1$	
$B^- \to K^0 K^-$	1.31 ± 0.17	4 ± 14	1.47 ± 0.09	22.5 ± 2.7	
$B^- o \pi^0 K^-$	12.9 ± 0.50	3.7 ± 2.1	12.99 ± 0.23	-6.44 ± 0.6	
$B^- o ar K^0 \pi^-$	23.7 ± 0.80	-1.7 ± 1.6	23.15 ± 0.42	-2.84 ± 0.24	
$B^- o ho^- \pi^0$	10.9 ± 1.40	2 ± 11	8.73 ± 0.25	24.2 ± 2.3	
$B^- \to \pi^0 K^{*-}$	6.80 ± 0.90	-39 ± 21	3.51 ± 0.19	-33.5 ± 1.7	
$B^- \to K^- K^{*0}$	0.59 ± 0.08	12 ± 10	0.476 ± 0.022	22.5 ± 1.3	
$B_s \to K^- K^+$	26.6 ± 2.20	-14 ± 11	24.8 ± 1.50	-8.1 ± 2.3	
$B_s o \pi^-\pi^+$	0.7 ± 0.1	_	0.798 ± 0.092	-1.62 ± 0.39	
$B_s o K^0 ar K^0$	20.0 ± 6.00	0 ± 0	26.2 ± 1.60	0 ± 0	
$B_s \to \pi^- K^+$	5.80 ± 0.70	22.1 ± 1.5	5.69 ± 0.64	22.1 ± 1.2	
$B_s \to K^+ K^{*-} / K^- K^{*+}$	19.0 ± 5.0	_	15.28 ± 0.90	$-33.8 \pm 1.3 / 53.5 \pm 2.4$	
$B_s \to K^0 \bar{K}^{*0} / \bar{K}^0 K^{*0}$	20.0 ± 6.00	_	15.06 ± 0.96	0 ± 0	

over 5 sigma error data

CKM phase angle γ : 75.1 \pm 2.9

Experimental γ : 72. $1^{+4.1}_{-4.5}$

Our fitted Gegenbauer moments of pseudoscalar meson and vector meson:

Gegenbauer moments	$a_{1\pi}$	$a_{2\pi}$	$a_{4\pi}$	$a^P_{2\pi}$	$a_{2\pi}^T$	$a_{1 ho}^{ }$	$a_{2 ho}^{ }$
Our Result	_	0.644±0.075	-0.41 ±0.09	1.08 ±0.15	-0.48±0.33	_	0.16±0.08
Sum Rule		0.25±0.15	-0.015 <u>+</u> 0.025				0.15±0.07

Gegenbauer moments	a_{1K}	a_{2K}	a_{4K}	a_{2K}^P	a_{2K}^T	$a_{1K^*}^{ }$	$a_{2K^*}^{ }$
Our Result	0.331±0.082	0.28±0.10	-0.398 <u>+</u> 0.073				0.137±0.029
Sum Rule	0.06±0.03	0.25±0.15		_		0.03±0.02	0.11±0.09

Other processes predicted by our results:

channel	data		fit	PQCD	
	branching ratio (10^{-6})	$A_{CP}(\%)$	branching $ratio(10^{-6})$	$A_{CP}(\%)$	branching ratio
$B^0 o K^+K^-$	0.078 ± 0.015	_	0.155 ± 0.027	52.0 ± 15.0	
$B^0 \to \pi^+ K^{*-}$	7.5 ± 0.4	-27 ± 4	4.93 ± 0.28	-52.0 ± 2.1	5.1 [58]
$B^0 o \pi^0 ho^0$	2.0 ± 0.5	-27 ± 24	0.026 ± 0.0022	-47 ± 21	0.15 [59]
$B^0 o K^- ho^+$	7.0 ± 0.9	20 ± 11	4.41 ± 0.6	48.3 ± 4.9	4.7 [58]
$B^- o ho^- ar K^0$	7.3 ± 1.2	-3 ± 15	3.39 ± 0.55	3.18 ± 0.55	3.6 [58]
$B^- o ho^0 K^-$	3.7 ± 0.5	37 ± 1	2.24 ± 0.41	69.7 ± 3.0	2.5 [58]
$B^- o \pi^- \bar{K}^{*0}$	10.1 ± 0.8	-4 ± 9	5.17 ± 0.23	-0.61 ± 0.19	5.5 [58]
$B^- o \pi^- ho^0$	8.3 ± 1.2	0.009 ± 0.019	4.61 ± 0.36	-35.3 ± 1.8	$\sim 5.39[63]$
$B_s \to \pi^- K^{*+}$	2.9 ± 1.1	_	9.53 ± 0.24	-25.5 ± 1.0	7.6[52]

These channels are not predicted well in leading order by PQCD approach.

- [52] A. Ali, G. Kramer, Y. Li, C. D. Lu, Y. L. Shen, W. Wang and Y. M. Wang, Phys. Rev. D 76, 074018 (2007)
- [58] H. n. Li and S. Mishima, Phys. Rev. D 74, 094020 (2006)
- [59] Z. Rui, X. Gao and C. D. Lu, Eur. Phys. J. C 72, 1923 (2012)
- [63] C. D. Lu and M. Z. Yang, Eur. Phys. J. C 23, 275-287 (2002)

Summary

- We establish a database of B/Bs charmless two body decays by an automated program. Branching ratios and CPVs of different processes can be easily derived by this database.
- Based on this database, we fit the CKM phase angle γ and Gegenbauer moments of light mesons.
- With the fitted parameters, we give the PQCD predictions of branching ratios and CPVs of several processes. Some processes can not be predicted well at leading order.

Thook You 9

Backup

$$\begin{split} A(\bar{B}_{s}^{0} \to \pi^{-}K^{+}) &= \frac{G_{F}}{\sqrt{2}} V_{ub} V_{ud}^{*} \{ f_{\pi} F_{B_{s} \to K}^{LL}[a_{1}] + M_{B_{s} \to K}^{LL}[C_{1}] \} - \frac{G_{F}}{\sqrt{2}} V_{tb} V_{td}^{*} \Big\{ f_{\pi} F_{B_{s} \to K}^{LL}[a_{4} + a_{10}] + f_{\pi} F_{B_{s} \to K}^{SP}[a_{6} + a_{8}] \\ &+ M_{B_{s} \to K}^{LL}[C_{3} + C_{9}] + f_{B_{s}} F_{ann}^{LL} \Big[a_{4} - \frac{1}{2} a_{10} \Big] + f_{B_{s}} F_{ann}^{SP} \Big[a_{6} - \frac{1}{2} a_{8} \Big] + M_{ann}^{LL} \Big[C_{3} - \frac{1}{2} C_{9} \Big] \\ &+ M_{ann}^{LR} \Big[C_{5} - \frac{1}{2} C_{7} \Big] \Big\}, \end{split}$$