Prospect of *D*⁰ mixing and CPV at LHCb

Patrick Spradlin on behalf of the LHCb collaboration

University of Oxford Particle Physics

The 4th International Workshop on Charm Physics (Charm2010) 21-24 October 2010, IHEP, Beijing,China

Outline

- 2 CPV and mixing in $D^0 \overline{D}^0$
- 3 Time-integrated CPV searches

Outline

- 2 CPV and mixing in $D^0 \overline{D}^0$
- 3 Time-integrated CPV searches
- 4 Summary

Large Hadron Collider

Arford LHCb hysic

ALICE Point 2

ALICE LEP/LHC

CERN ATLAS Point 1

LHC - B

LHCb

LHCb detector

LHCb features

- The features that make LHCb excellent for B physics also make it a good charm physics experiment,
- High event rate,
- Excellent vertexing and proper time resolution.
- Good tracking and momentum resolution,
- Excellent K- π discrimination.

LHCb trigger

Two stage trigger:

- ~ 25 MHz crossing rate at nominal design luminosity.
- L0 hardware trigger high p_t particles,
 - Subset of detector information,
 - Fast decision,
 - 1 MHz output rate.
- High Level Trigger (HLT) in software physics signatures
 - Software trigger running in event farm,
 - All detector information available,
 - Multiple layers with increasing levels of decision complexity.

• ~ 2 kHz output rate.

LHCb in 2010

Data taking in 2010 is rapidly evolving,

- Recorded almost 20 pb⁻¹... ... and still collecting!
- Prolific charm production,
- Early data taking with relaxed trigger
 - \Rightarrow Excellent for prompt charm collection.

Beam conditions have evolved rapidly,

- Luminosity per bunch crossing now significantly exceeds design values. Design: mean visible *p*-*p* interactions / crossing $\mu = 0.4$. Current: peak $\mu \approx 2.5$.
- Trigger has rapidly evolved to keep up.

Charm at LHCb

Charm in hadronic collisions

Prompt production

b decays $(B \rightarrow D^{(*)}X)$

- Secondary is an important background.
- IP used for discrimination in *c* and *b* cross-sections.
- Aside: Secondary charm may be used for some CPV and mixing measurements.

Outline

1 LHCb detector

- 2 CPV and mixing in $D^0 \overline{D}^0$
 - 3 Time-integrated CPV searches

4 Summary

Overview

D⁰ CPV and mixing

 D^0 is unique: the only 'up'-type meson that mixes,

- Unique sector of NP probes.
- First evidence for $D^0 \overline{D^0}$ mixing in 2007,
- Averages show compelling evidence for mixing,
- Still no single 5σ measurement.
- CPV is very small in the SM
 - Can be enhanced by NP, but generally highly suppressed,
 - *B*-factory data sets have probed down to $\mathcal{O}(10^{-2})$

Complementary measurements

Several complementary measurements illuminate different aspects of mixing.

- CP eigenstates: y_{CP} through ratio of lifetimes,
- Wrong sign decays: x'^2 and y' through lifetime distribution,
- Time-dependent Dalitz analyses: direct access to x and y,
- Semileptonic decays: total mixing rate.

LHCb will have sensitivity with several hadronic final states.

Two body decays

Two-body mixing and CPV with CP eigenstates

Compare lifetimes of the non-eigenstate RS decay $D^0 \rightarrow K^-\pi^+$ and CP even decays $D^0 \rightarrow K^-K^+(\pi^-\pi^+)$

$$y_{CP} \equiv \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to (K^+ K^-, \pi^+ \pi^-))} - 1$$
$$= y \cos \phi - \frac{1}{2} A_M x \sin \phi$$

Both untagged and D^{*+} -tagged measurements in preparation

Charm2010 2010.10.22

13/33

Tagged measurement easily extended to a CP asymmetry measurement

$$A_{\Gamma} \equiv \frac{\tau(\overline{D^{0}} \to K^{-}K^{+}) - \tau(D^{0} \to K^{-}K^{+})}{\tau(\overline{D^{0}} \to K^{-}K^{+}) + \tau(D^{0} \to K^{-}K^{+})}$$

= $\frac{1}{2}A_{M}y\cos\phi - x\sin\phi$ Φ_{hysics}

Two-body mixing and CPV with WS $K\pi$

Two paths from D^0 to the 'wrong sign' (WS) $\pi^- K^+$

- Direct Doubly Cabibbo Suppressed (DCS) decay,
- Mixing to D
 ⁰ followed by a Cabibbo Favored (CF) decay,

Expanding resulting proper time distribution in small parameters x' and y' to second order:

 $\Gamma(t; D^0 \to \pi^- K^+) \propto e^{-\Gamma t} \left[R_D + \sqrt{R_D} y' \Gamma t + \frac{1}{4} (y'^2 + x'^2) (\Gamma t)^2 \right]$

- R_D: ratio of DCS to CF decay rates
- (x', y') related to (x, y) by a strong phase

Two body decays

Beautiful signal samples: $D^0 \rightarrow K^- \pi^+$, 124 nb⁻¹

P. Spradlin (Oxford)

Prospect of D⁰ mixing and CPV at LHCb

Two body decays

Beautiful signal samples: $D^0 \rightarrow K^- K^+$, 124 nb⁻¹

Entries / (0.5 MeV/c²) $N_{eignel} = 1931 \pm 112$ 500 Mass $\sigma = 0.58 \pm 0.06 \text{ MeV/c}^{2}$ LHCb D^{*+} -tagging 400 Preliminary √s = 7 TeV Data necessary for 300 **CP-violation** 200 100 measurements. **í**140 145 150 т_{(КК)π_{зюж} - т_{КК} (MeV/c²)} m_{KK} (MeV/c²) 1900 1900 1880 1880 1860 1840 1820 1800 ¹⁵⁰ п_{(КК)π_{stow}} - ¹⁵⁵ 160 м_{КК} (MeV/c²) 140 145 Entries / (3 MeV/c*)

P. Spradlin (Oxford)

Prospect of D⁰ mixing and CPV at LHCb

40

-30 -20

10

Two body decays

Beautiful signal samples: $D^0 \rightarrow \pi^- \pi^+$, 124 nb⁻¹

P. Spradlin (Oxford)

Two body decays

Two-body time-dependent analysis methods

Binned method

- Partition data in bins of proper time,
- Measure ratios of yields in each bin,
- Mixing parameters estimated from polynomial fits.

Potentially easier to control systematics,

Most acceptance effects cancel.

Unbinned fits to proper time distribution,

- Carefully model proper time acceptance,
- Also requires careful modelling variation of secondary discrimination variable (IP) with proper time.

Potentially higher statistical sensitivity.

P. Spradlin (Oxford)

Prospect of D⁰ mixing and CPV at LHCb

Summary

Time-integrated CPV searches: two-body

Time-integrated CPV with two-body decays,

- Currently investigating two-body D^0 decays and $D^+_{(s)}
 ightarrow K^0_{S}h$,
- Requires careful control of production and detection asymmetries,
- Careful use of control channels, e.g., CDF's recent $D^0 \rightarrow \pi^- \pi^+$ measurement.
- Measurements of relative asymmetries.

Time-integrated CPV searches: 3-body

Final-state distributions in multibody decays,

- Amplitude analysis,
- Model-independent method,
 - See Bediaga et. al, Phys.Rev.D80(2009),096006.
 - Partition the Dalitz plot into bins,
 - Model-independent mapping of local CP asymmetries,
 - Can be made largely insensitive to production asymmetries,
 - Focusing on SCS $K^+K^-\pi^+$ and $\pi^+\pi^-\pi^+$ final states.

Prospect of D⁰ mixing and CPV at LHCb

Beautiful signal samples: $D^+ \rightarrow K^- K^+ \pi^-$, 580 nb⁻¹

Beautiful signal samples: $D^+ \rightarrow \pi^- \pi^+ \pi^-$, 580 nb⁻¹

Prospect of D⁰ mixing and CPV at LHCb

Time-integrated CPV searches: four-body

Time-integrated CPV with four-body decays,

- Focusing on $D^0 \rightarrow K^+ K^- \pi^+ \pi^$ and the rare decay $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$,
- T-odd moments,
 - Construct observable that is odd under time reversal, e.g. a scalar triple product of vectors or the *KK*-ππ decay plane angle,
 - Construct a T-violating asymmetry from this observable on the conjugate decays,
- Eventually, full amplitude analysis.

Outline

LHCb detector

- 2 CPV and mixing in $D^0 \overline{D}^0$
- 3 Time-integrated CPV searches

LHCb charm data sets

- Current sample sizes in D^0 to right sign $K^-\pi^+$, K^-K^+ , $\pi^-\pi^+$ and D^+ to 3 charged final state particles are in the ball park of those of existing measurements,
- Collected with rapidly evolving beam and trigger conditions,
 - Sample sizes for analysis in 2010 will depend on the trigger analysis,
- 2011 data taking conditions will be more stable,
 - Strong effort to optimize trigger for larger and more consistent data set in 2011.

Summary

- LHCb is producing beautiful charm samples!
- First charm cross-section measurements public See talk by Zhenwei Yang.
- Raw sample sizes in several modes already approaching those of existing measurements,
- 2011 expected to produce samples capable of significant improvements in sensitivity over existing measurements,
- A broad program of charm CPV and mixing measurements are in preparation,
- We look forward to making significant contributions to charm physics!

BACKUP

Other charm topics

Investigating CPV and mixing in additional modes

- WS $D^0 \rightarrow K^+ \pi^- \pi^0$,
- WS $D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$,

Rare decay measurements,

- $D^0
 ightarrow \mu \mu$,
- $D^+ \rightarrow \pi^+ \mu^- \mu^+$.
- Lepton flavor violation searches, e.g., $D^0 \rightarrow e^- \mu^+$.

L0 trigger

- Identify single particle b-hadron decay products,
 - Final state particles

 (π, K, e, γ, μ) with significant p_t,
 - Threshold *p_t* values of a few GeV,
 - Sets of thresholds optimized for physics goals.
- 40 MHz input \rightarrow 1 MHz output

31/33

High Level Trigger stage 1 (HLT1)

- First stage of software trigger,
- Identify 1 and 2 final state particle signatures,
- Parallel trigger paths for various final state particles,
- Fast identification of simple *B* event features,

- High *p_t* particles (hadrons, muons, electrons, and photons),
- Charged tracks with sizable impact parameter with respect to primary interaction vertex (PV),
- Products of prompt *D* have smaller mean *p*_t than those of secondary *D*.

High Level Trigger stage 2 (HLT2)

- Require events pass HLT1,
- Reduced input rate allows compute-intensive reconstruction,
- Complete final state reconstruction,
- Channels for specific topologies,
 - Inclusive selections of related groups of decays,
 - Exclusive decay chain, e.g., $D^{*+} \rightarrow \pi_s^+ D^0(h^-h^+)$
 - Channels can also be layered with increasing precision of parameter estimates.
 - 2 kHz total output rate

