# Recent results from Charmonium decays at BESIII

#### LiangLiang WANG

China Center of Advanced Science and Technology (For BESIII Collaboration)

# Outline

- BEPCII and BESIII
- Double radiative transition  $\psi' \rightarrow \gamma \gamma J/\psi$
- Evidence for  $\psi' \rightarrow \gamma P$  (P= $\pi^0$ ,  $\eta$ )
- $\psi' \rightarrow \gamma \chi_{cJ}$ >  $\chi_{cJ} \rightarrow 4\pi^{0}$ >  $\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$ >  $\chi_{cJ} \rightarrow VV (V = \omega, \phi)$
- Summary

For detailed status of BEPCII and BESIII, and the published results  $\psi' \rightarrow \pi^0 h_c, \chi_{cJ} \rightarrow \pi^0 \pi^0, \eta\eta$ , please refer to Mr. H.M. Liu's talk "Status of the BESIII experiment" on 21st morning.

#### The Beijing Electron-Positron Collider II



# **BEPC II** achievements

| parameters                                                  | design                                | Achieved    |             |
|-------------------------------------------------------------|---------------------------------------|-------------|-------------|
|                                                             |                                       | BER         | BPR         |
| Energy (GeV)                                                | 1.89                                  | 1.89        | 1.89        |
| Beam curr. (mA)                                             | 910                                   | 650         | 700         |
| Bunch curr. (mA)                                            | 9.8                                   | >10         | >10         |
| <b>Bunch number</b>                                         | 93                                    | 93          | 93          |
| <b>RF voltage</b>                                           | 1.5                                   | 1.5         | 1.5         |
| * <i>v<sub>s</sub></i> @1.5MV                               | 0.033                                 | 0.032       | 0.032       |
| $\beta_x^*/\beta_y^*(\mathbf{m})$                           | 1.0/0.015                             | ~1.0/0.0135 | ~1.0/0.0135 |
| Inj. Rate (mA/min)                                          | 200 e <sup>-</sup> /50 e <sup>+</sup> | >200        | >50         |
| Lum. (× 10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 1                                     | 0.33        |             |

### The Beijing Spectrometer III



# **BESIII data samples**



2010: ~ 910 pb<sup>-1</sup>  $\psi(3770)$  data taken at 3.773GeV ~ 70 pb<sup>-1</sup> energy scan data taken from 3.646 to 3.892 GeV L.L. WANG Charm 2010 Beijing 6

2009:

# Radiative $\psi$ ' decay at BESIII

- Inclusive photon spectrum
- Good photon energy resolution
- Large statistics
- provide a clean environment to study transition between different charmonia and other decay of charmonia



### Double radiative transition $\psi' \rightarrow \gamma \gamma J/\psi$ (1)

- Two photon spectrum a powerful tool to study the excitation level (e.g. atomic hydrogen, positronium)
- CLEO: Upsilon(3S) $\rightarrow \gamma\gamma$ Upsilon(2S)
- Two-photon transition in charmonium still escaped from experimental measurement due to small branching ratios
- With the largest ψ' data sample, two-photon transition between ψ' and J/ψ is studied through γγee and γγμμ decay modes.



#### Double radiative transition $\psi' \rightarrow \gamma \gamma J/\psi$ (2)



- Understood BG: QCD BG from  $\psi$ ' decay ( $\psi' \rightarrow \pi^0 \pi^0 J/\psi, \psi' \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \gamma J/\psi$ ) continuum processes
- Significant enhancement on the  $J/\psi$  peak

$$Br(\psi(2S) \to \gamma \gamma J/\psi)_{ee} = (1.09 \pm 0.08(\text{stat.})^{+0.22}_{-0.18}(\text{syst.})) \times 10^{-3}$$

$$Br(\psi(2S) \to \gamma \gamma J/\psi)_{\mu\mu} = (1.02 \pm 0.07 (\text{stat.})^{+0.24}_{-0.21} (\text{syst.})) \times 10^{-3}$$

 $Br(\psi(2S) \to \gamma \gamma J/\psi) = (1.05 \pm 0.05(\text{stat.})^{+0.23}_{-0.20}(\text{syst.})) \times 10^{-3}.$ 

# Evidence for $\psi' \rightarrow \gamma P (P = \pi^0, \eta)$ (1)

- Test for various phenomenological mechanisms
- The first order of perturbation theory predicts:  $R_{J/\psi} = B(J/\psi \rightarrow \gamma \eta)/B(J/\psi \rightarrow \gamma \eta') = R_{\psi'}$
- Measurements from CLEO (PRD79,111101(2009)):  $R_{\psi}$  < 1.8% (90% C.L.) and  $R_{J/\psi}$  = (21.1 ± 0.9)%
- The suppressed decay mode  $\psi' \rightarrow \gamma \pi^0$  is calculated in PRD79,097301: B( $\psi' \rightarrow \gamma \pi^0$ )=2.19×10<sup>-7</sup>
- CLEO gives  $B(\psi' \rightarrow \gamma \pi^0) < 5.0 \times 10^{-6} (90\% \text{ C.L.})$

# Evidence for $\psi' \rightarrow \gamma P$ ( $P=\pi^0, \eta$ ) (2)

One dangerous background for ψ'→γπ<sup>0</sup>(γγ) is ee→γγ events with one photon conversion but the produced ee pair are not well reconstructed.
So special requirement N<sub>hits</sub><=10 is applied, where N<sub>hits</sub> is the number of hits in the MDC sector between the two shower positions.



Red histogram: MC signal, dashed histogram: continuum BG, Points:  $\psi$ ' data

2010-10-23

## Evidence for $\psi' \rightarrow \gamma P (P = \pi^0, \eta)$ (3)



2010-10-23

#### First measurement of $Br(\chi_{cJ} \rightarrow 4\pi^0)$



Study of  $\chi_{cI} \rightarrow \gamma V (V = \rho, \omega, \phi)$  (1)

A favorable process to validate theoretical techniques

| Theoretical predictions and results from CLEO-c on Br( $\chi_{cJ} \rightarrow \gamma V$ ) (10 <sup>-6</sup> ): |                               |                       |                   |                  |                      |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------------|------------------|----------------------|--|
| 1                                                                                                              | Vode                          | CLEO <sup>1</sup>     | pQCD <sup>2</sup> | QCD <sup>3</sup> | QCD+QED <sup>3</sup> |  |
| $\chi_{c0}$                                                                                                    | $ ightarrow \gamma  ho^{0}$   | < 9.6                 | 1.2               | 3.2              | 2.0                  |  |
| $\chi_{c1}$                                                                                                    | $\rightarrow \gamma \rho^0$   | 243 $\pm$ 19 $\pm$ 22 | 14                | 41               | 42                   |  |
| $\chi_{c2}$                                                                                                    | $\rightarrow \gamma \rho^{0}$ | < 50                  | 4.4               | 13               | 38                   |  |
| $\chi_{c0}$                                                                                                    | $ ightarrow \gamma \omega$    | < 8.8                 | 0.13              | 0.35             | 0.22                 |  |
| $\chi_{c1}$                                                                                                    | $ ightarrow \gamma \omega$    | $83\pm15\pm12$        | 1.6               | 4.6              | 4.7                  |  |
| $\chi_{c2}$                                                                                                    | $ ightarrow \gamma \omega$    | < 7.0                 | 0.5               | 1.5              | 4.2                  |  |
| $\chi_{c0}$                                                                                                    | $ ightarrow \gamma \phi$      | < 6.4                 | 0.46              | 1.3              | 0.03                 |  |
| $\chi_{c1}$                                                                                                    | $\rightarrow \gamma \phi$     | < 26                  | 3.6               | 11               | 11                   |  |
| $\chi_{c2}$                                                                                                    | $ ightarrow \gamma \phi$      | < 13                  | 1.1               | 3.3              | 6.5                  |  |

1. PRL 101,151801 (2008). 2. Chin. Phys. Lett. 23, 2376 (2006). 3. hep-ph/0701009

Study of  $\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$  (2)



# Study of $\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$ (3)



Study of 
$$\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$$
 (4)

L: Longitudinal polarization, T: Transverse polarization,
 θ: Helicity angle

$$\frac{dN}{d\cos\theta} \propto |A_L|^2 \cos^2\theta + \frac{1}{2} |A_T|^2 \sin^2\theta \qquad f_T = \frac{|A_T|^2}{|A_T|^2 + |A_L|^2}$$

• The longitudinal polarization dominates in the  $\chi_{c1} \rightarrow \gamma V$ :



Study of  $\chi_{c1} \rightarrow VV (V=\omega, \phi)$ 

Previous measurements from BESII.

Only  $\chi_{c0}$  and  $\chi_{c2}$  decays into  $\phi\phi$  and  $\omega\omega$  are observed.

| <b>BR</b> (10 <sup>-3</sup> )           | <b>χ<sub>c0</sub></b>    | $\chi_{c2}$              |  |
|-----------------------------------------|--------------------------|--------------------------|--|
| →фф<br>BESII, PLB 642, 197 (2006)       | $0.94 \pm 0.21 \pm 0.13$ | $1.70 \pm 0.30 \pm 0.25$ |  |
| → <b>@@</b><br>BESII, PLB 630, 7 (2005) | $2.29 \pm 0.58 \pm 0.41$ | $1.77 \pm 0.47 \pm 0.36$ |  |

- *χ*<sub>c1</sub>→VV is suppressed due to helicity selection rule in
   pQCD
- $\chi_{cJ} \rightarrow \omega \phi$  is doubly OZI suppressed.



#### $\chi_{cJ} \rightarrow \omega \omega, \omega \rightarrow \pi^+ \pi^- \pi^0$

- Using kinematic fit to select  $5\gamma 2(\pi^+\pi^-)$  candidates
- $\pi^0 \pi^0$  pair reconstruction: minimize  $[\mathbf{M}^{(1)}(\gamma\gamma) \mathbf{m}_{\pi 0}]^2 + [\mathbf{M}^{(2)}(\gamma\gamma) \mathbf{m}_{\pi 0}]^2$  loop over 5  $\gamma$
- $\omega$  reconstruction: minimize  $|m(\pi^+ \pi^- \pi^0) m_{\omega}|$ , then  $\pi^+ \pi^- \pi^0$  reconstruct another  $\omega$



 $\chi_{cI} \rightarrow \omega \phi, \omega \rightarrow \pi^+ \pi^- \pi^0, \phi \rightarrow K^+ K^-$ 

- K<sup>+</sup>K<sup>-</sup> are identified : minimize |M(K<sup>+</sup>K<sup>-</sup>)-m<sub>b</sub>|
- Using kinematic fit to select  $3\gamma 2K2\pi$  candidates
- $\omega$  reconstruction: minimize  $[M_{\gamma\gamma}-m_{\pi0}]^2 + [M_{\gamma\gamma\pi+\pi-}-m_{\omega}]^2$  loop over  $3\gamma$



## Summary

- With the largest  $\psi$ ' data sample in the world and good performance of BEPCII and BESIII, several recent results about charmonium decay came out:
  - > First evidence of  $\psi' \rightarrow \gamma \gamma J/\psi$
  - First evidence for ψ'→γP (P= $\pi^0$ , η)
  - > First measurement of  $\chi_{cJ} \rightarrow 4\pi^0$
  - > Study of  $\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$
  - > Study of  $\chi_{cJ} \rightarrow VV (V=\omega,\phi)$
- More exciting results are coming soon from BESIII.

#### Thank you!