

Open Charm and Charmonium Production: First Results from LHCb

Zhenwei YANG @Tsinghua Univ. on behalf of the LHCb collaboration

21-24, October, 2010 IHEP, Beijing, China

Outline

- Physics ambition of LHCb
- LHCb detector and performance
- Physics interests on charm
- First results on charmonium and open charm
- ➢Summary

Successful running in 2009 @ 2.36 TeV
First collisions @ 7 TeV on March 30, 2010
Integrated Lumi ~ 20 pb⁻¹ (20 Oct, 2010)

Geneva

Physics Aims of LHCb

"dedicated to heavy flavour physics at the LHC"

• New Physics

CP violation: precise measurements of CKM angles **rare decays** of beauty and charm hadrons

Heavy Flavour Physics

B production B_c, b-baryon physics charm decays (e.g. D-mixing) tau lepton flavour violation

bb production at LHC

✓ Average design Luminosity ~ 2×10³² cm⁻²s⁻¹
▶ 2 fb⁻¹ per nominal year (10⁷ s), ~ 10¹² bb pairs per year

LHCb Detector

LHCb Data Taking

Stable data taking with high efficiency in all subsystems

Physics Interests on Charm

1) J/ ψ cross-section (and polarization)

- Production mechanism still not well understood, theoretical interests on direct J/ψ
- \succ Three main sources of J/ ψ
 - 1) Direct J/ ψ
 - 2) Decay from heavier charmonium
 - 3) Decay from b-hadrons

Prompt J/ψ

J/ ψ from b

Fractions of heavier charmonia are helpful

2) Essentially related to many investigations of CP violation and rare decays

(see talk of Patrick Spradlin tomorrow afternoon)

3) Understanding of charm is fundamental for later analyses

Measurement of J/ ψ cross section

• Cross section (both prompt J/ ψ and J/ ψ from b)

$$\sigma = \frac{N(J/\psi \to \mu^+ \mu^-)}{L \cdot \varepsilon \cdot Br(J/\psi \to \mu^+ \mu^-)}$$

N: Signals from reconstruction of $J/\psi \to \mu^+ \mu^-$
 $\varepsilon = \varepsilon_{\rm acc} \times \varepsilon_{\rm rec} \times \varepsilon_{\rm trig}$

Separate "prompt J/ψ" from "J/ψ from b" by fitting pseudo-proper time t_z
σ(incl. J/ψ)
σ(J/ψ from b)

Measurement of J/ ψ cross section

(for J/ ψ from b)

- good approximation of average b lifetime
- well described by exponential distribution

Mass fit

Signal: Crystal Ball function $f(m, \mu, \sigma, \alpha, n) =$ Background: 1st order polynomial

$$\frac{\left(\frac{n}{|\alpha|}\right)^{n} e^{-\frac{1}{2}\alpha^{2}}}{\left(\frac{n}{|\alpha|} - |\alpha| - \frac{m-\mu}{\sigma}\right)^{n}} \qquad \frac{m-\mu}{\sigma} < -|\alpha|$$
$$\exp\left(-\frac{1}{2}\left(\frac{m-\mu}{\sigma}\right)^{2}\right) \qquad \frac{m-\mu}{\sigma} > -|\alpha|,$$

L=14.2 nb⁻¹ Events / 10 MeV/c² LHCb 1000 Preliminary √s = 7 TeV Data 800 $L = 14.2 \text{ nb}^{-1}$ 600 400 200 2.8 3 3.2 3.4 $M_{\mu\mu}$ [GeV/ c^2]

Fit results (2.5<y<4, p_T <10 GeV/c): Signal = 2872 ± 73 S/B = 1.3 μ = (3088 ± 0.4) MeV/c² σ = (15.0 ± 0.4) MeV/c²

t_z Fit Result

 Background from invariant mass sidebands
Crosscheck with a binned fit gives consistent results

Fit results : Number of prompt J/ψ, n_p : 2527 ± 74

Number of J/ ψ from *b*, n_b : 316 ± 24

σ of two Gaussian: (111±13) fs, (40±3) fs Core resolution fraction between: 0.74 ± 0.06

Average *b* lifetime $\tau_b = (1.35 \pm 0.10)$ ps

$$f_b = n_b / (n_p + n_b)$$

= (11.1 ± 0.8)%

<σ>= 58 fs

Total Efficiency and Polarization Effect

- ε depends strongly on polarization
- treated as systematic error for first measurement

fully transverse +1 $\frac{dN}{d\cos\theta} = \frac{1+\alpha\cos^2\theta}{2+2\alpha/3}, \text{ where } \alpha = \langle \alpha \rangle$

0 no polarization

With more statistics, a direct measurement of polarization with full angular analysis, in different reference frames and bins of y and p_{τ} , is foreseen.

Preliminary Results: 14.2 nb⁻¹

 $\sigma(J/\psi \text{ from } b, p_T < 10 \text{GeV}/c, 2.5 < y < 4) = 0.81 \pm 0.06 \pm 0.13 \,\mu b$

Systematic errors mainly come from data/MC discrepancy. Dominant contributions from trigger and tracking efficiencies. (see CERN-LHCb-CONF-2010-010)

15

Perspectives with More Data

Will measure also polarization

 Region of measurement (y, p_T) will be extended with more data, some overlap with CMS/ATLAS

Much more data since ICHEP
O(1M) J/ψ for 20 pb⁻¹

- 1) Already seen χ_c peak
- 2) With more statistics, we will measure $\sigma(\chi_{c1}+\chi_{c2})/\sigma(J/\psi)$ separately for prompt χ_c and χ_c from b This will help us to interpret J/ ψ cross section.

 Well reconstructed through two decay channels
With more statistics, we will measure separately cross sections of prompt ψ(2S) and ψ(2S) from b, and eventually polarization, like for J/ψ
No feed-down contribution from heavier charmonia, easier to interpret

X(3872) (L=5 pb⁻¹)

Open Charm Production

- First measurements at √s=7 TeV.
- Measure cross section vs y, p_T in 1.8 nb⁻¹, with open trigger.
- Use impact parameter distributions to separate prompt D and those from b-hadrons

Good agreement with expectations!

Mass Peaks of Open Charm

Luminosity only 0.8 nb⁻¹ for this plot

D⁰ cross section (L=1.8 nb⁻¹)

D⁺ cross section (L=1.8 nb⁻¹)

D⁺+c.c. cross-section LHCb,√s=7 TeV LHCb,√s=7 TeV 2.0<y<2.5 2.5<y<3.0 10 1 LHCb Preliminary LHCb Preliminary Pythia(LHCb tune) Pythia(LHCb tune) 10⁻¹ BAK et al. BAK et al. IC et al. MC et al. 10² LHCb,√s=7 TeV LHCb,√s=7 TeV 3.0<y<3.5 3.5<y<4.0 10 LHCb Preliminary 1 LHCb Preliminary Pythia(LHCb tune) Pythia(LHCb tune) BAK et al. BAK et al. 10⁻¹ MC et al. MC et al. 2 3 5 7 8 6 1 4 10^{2} LHCb,√s=7 TeV p_T [GeV/c] 4.0<v<4.5 10 1 LHCb Preliminary Pythia(LHCb tune) 10⁻¹ BAK et al. IC et al. 2 3 5 6 8 Δ p_T [GeV/c]

Summary

- LHCb producing physics measurements with high quality @ √s = 7 TeV
- Cross sections of prompt J/ ψ and J/ ψ from b measured separately
- Cross sections of D⁰, D^{*}, D⁺, D_s⁺ are measured, good agreement with theor. expectations
- Heavier charmonia well reconstructed and waiting for more statistics

Thank you

back up

Event Selection of J/ψ

Data Sample

• (14.15 \pm 1.42) nb⁻¹ (low pile-up conditions)

Event selection

- 2 muons
 - with fully reconstructed tracks (VELO + Tracker)
 - identified bymuon system
 - good vertex reconstructed
 - $p_{T} > 700 \text{ MeV/c}$
 - $-\,$ Mass window for signal definition: (M $_{J/\psi}$ \pm 390) MeV/c^2

• Trigger LO

- single muon, $p_T > 480 \text{ MeV/c}$
- HLT:
 - single muon, p_T > 1.3 GeV/c .OR. muon pair with M_{\mu\mu} > 2700 MeV/c^2

Efficiencies: $\varepsilon = \varepsilon_{acc} \times \varepsilon_{rec} \times \varepsilon_{trig}$

➢plenty of cross check with data

Using log(IP) to separate direct D-meson and D meson from b

Data Set of J/ $\psi \pi \pi$ (1)

Data

- 600 nb⁻¹ from stripping 7, di-muon strip
- Tracks refitted with alignment v4.1

J/ψ selection

- \bullet Loose J/ ψ candidates from the DST, TOS
- Muon cuts $\chi^2\!/dof\!<\!4,\,pt\!>\!700$ MeV, $8 < \!p \!<\!500$ GeV
- pt > 2 GeV
- $\mid dM(J/\psi) \mid < 50 \text{ MeV}$

Global event cuts

• < 10000 OT hit, < 3000 IT hits

Data Set of J/ $\psi \pi \pi$ (2)

π pair selection

- Pion pair selection $\chi^2/dof < 4$, pt > 300 MeV, pidE < 0, p < 500 GeV
- pt1 + pt2 > 800 MeV

Candidate selection

- $\bullet \, Q < \, 300 \ MeV$
- Refit with J/ ψ mass constraint (DecayTreeFitter), require $\chi^2/dof < 8$

Quite similar to selection of Stefano

- Mass constrained fit
- Use of electron veto
- Tighter cut on pt sum, no cut on product of pts

Selections of D0 & D*

 $D^0 \rightarrow K^- \pi^+$ and $D^{*+} \rightarrow (D^0 \rightarrow K^- \pi^+) \pi^+$

- K,π: $\chi^{2}(track)/DoF < 9$ $\chi^{2}(IP) > 9$ pT > 700 MeV/c
- $K : \Delta LL(K-π) > π :$ $\Delta LL(K-π)$
- D⁰: $\chi^{2}(\text{vertex}) < 9$ $\chi^{2}(\text{flight}) > 16$ $\chi^{2}(\text{IP}) < 9$ $\theta < 12 \text{ mrad}$

K,π : χ^2 (track)/DoF < 10 K,πD : χ^2 (IP) > 9

- $\mathbf{K}: \quad \Delta \mathbf{L} \mathbf{L} (\mathbf{K} \pi) > \mathbf{0}$
- π : $\Delta LL(\pi K) > 0$
- $\begin{array}{rl} D^{0} : & \chi^{2}(\text{vertex}) < 9 \\ & c\tau > 90 \ \mu\text{m} \\ & \chi^{2}(\text{IP}) < 9 \end{array}$
- D^{*+} : χ^2 (vertex)<9

Selections of D+ and Ds

 $D^+ \longrightarrow K^- \pi^+ \pi^+ \text{ and } D_s \longrightarrow (\phi \longrightarrow K^- K^+) \pi^+$

K, π : Prob(χ^2 (track)) > 10⁻⁴

pT > 200 MeV/c

p > 3.2 GeV/c

 $\chi^{2}(IP) > 3.0$

2 daugthters: pT > 400 MeV/c $\chi^2(IP) > 10$

1 daughter: $\chi^2(IP) > 50$

- K: $\Delta LL(K-π) > 3.3$
- $\pi : \qquad \Delta LL(\pi K) > -10$

 $\begin{array}{rl} D+:& \chi^2(vertex)<8\\ & \theta<14 \mbox{ mrad}\\ & \chi^2(flight)>90\\ & \tau<\ 0.01 \mbox{ ns} \end{array}$

 $K,\pi:\chi^2(track)/DoF<4$

- K: $\chi^2(IP) > 2$
- π : $\chi^2(IP) > 10$
- $K: \quad \Delta LL(K-\pi) > 9$
- π : $\Delta LL(\pi-K) > -2$
- ϕ : $|\Delta M| < 20 MeV/c^2$
- Ds : χ^2 (vertex)/DoF<5 Ds : χ^2 (flight)> 67