Status of the BESIII Experiment

Huaimin Liu (IHEP, Beijing) For the BESIII Collaboration

The 4th International Workshop on Charm Physics Oct. 21-24, 2010, IHEP, Beijing

Outline

- BEPCII/BESIII performance
- Physics results
- Data-taking plan
- Detector upgrade
- Summary

The BEPC/BESII upgrade project started in 2004

BEPCBESII(Beijing Electron Positron Collider)(Beijing Spectrometer)

CM Energy ranges from 2 to 5 GeV Luminosity at $J/\psi \sim 5 \times 10^{30}$ cm⁻² s⁻¹

BEPCII: a high luminosity double-ring collider

Beam energy: 1.0-2.3 GeV Luminosity: 1×10^{33} cm⁻²s⁻¹ **Optimum energy:** 1.89 GeV **Energy spread:** 5.16 × 10⁻⁴ No. of bunches: **93 Bunch length: 1.5 cm Total current: 0.91** A SR mode: 0.25A @ 2.5 GeV

Luminosity improvement

Optimization Debug systems Increase currents Increase luminosity BEPCII peak luminosity trend (2008-7-15 to 2009-5-13) Peak luminosity of 3.0×10^{32} achieved on May 13, 2009 at about 2×500mA, with 71 bunches.

Luminosity from Jan. 16- June 27 2010@ψ(3770)

Main parameters achieved in collision mode

parameters	design	Achieved	
		BER	BPR
Energy (GeV)	1.89	1.89	1.89
Beam curr. (mA)	910	650	700
Bunch curr. (mA)	9.8	>10	>10
Bunch number	93	93	93
RFvoltage	1.5	1.5	1.5
* <i>v_s</i> @1.5MV	0.033	0.032	0.032
$\beta_x^*/\beta_y^*(\mathbf{m})$	1.0/0.015	~1.0/0.0135	~1.0/0.0135
Inj. Rate (mA/min)	200 e ⁻ /50 e ⁺	>200	>50
Lum. (× 10 ³³ cm ⁻² s ⁻¹)	1	0.33	

BESIII Detector

NIM A614 (2010)

MDC performance

For Bhabhas in J/ψ data, spatial resolution is135μm and σ(P) is 11.3MeV/c.

PID: time resolution in TOF

The momentum of $2\sigma K/\pi$ separation achieved 0.96GeV/c for barrel double layers TOF

Resolutions in EMC from $\psi(2S)$ data

charm10 - liuhm

BESIII performance

Sub-detectors			design	measurement
MDC	Momentum resolution (1 GeV)		0. 5-0. 7%	0.58 %
	dE/dx resolution		6-8%	6.0% (hadron) 5.3% (Bhabha)
EMC	Energy resolution (1 GeV)		2.5-3%	2.5 %
	Spatial resolution		5-7 mm	6.0 mm
TOF	Time resolution	Barrel	80-90 ps	80 ps (Bhabha)
		Endcap	100-110 ps	100 ps (dimuon)
μ counter	$\delta_{R\Phi}=1.4 \text{ cm}^{\sim}1.7 \text{ cm}$			< 1.7 cm

BEPCII/BESIII Milestones

Oct. 25-31, 2007: accumulation of electron/positron beams Nov. 18, 2007: first e+e- collision without BESIII detector Mar. 2008: Collision at 500 mA \times 500 mA, Lumi.: 1 \times 10³² cm⁻²s⁻¹ April 30, 2008: Move the BESIII to IP July 20, 2008: First e+e- collision event in BESIII April 14, 2009 BESIII 106M ψ (2S) events (~40 days) May 14, 2009 BESIII 106M ψ (2S) events (~40 days) May 14, 2009 BEPCII Lumi. ~ 3 X10³²cm⁻²s⁻¹ July 28th, 2009 BESIII 226M J/ ψ events (41 days) Jan. 16--June 27 2010, 910 pb⁻¹ @ ψ (3770), 77 pb⁻¹ scan around ψ (3770)

charm10 - liuhm

First Hadronic Event on June 20, 2008

Data quality is good

 $\psi(2S) \to \gamma \chi_{cJ} \to \gamma 2\pi^+ 2\pi^-$

Clear inclusive photon spectrum

Excellent photon resolution

Data samples at BESIII

BESIII: J/ ψ 2009 - 226M ψ (2S) 2009 - 106M

BESIII: ψ(3770) 2010 - 910pb⁻¹

BESIII: 42pb⁻¹ @3.65GeV in 2009, 77pb⁻¹ scan @ψ(3770) in 2010

BESIII Offline Software System (BOSS)

Software improvement

- More efforts on
 - Alignment
 - Calibration
 - Tracking algorithm
 - MC tuning

Data/MC difference: at a level of 1% (tracking, PID, photon detection efficiencies)

Crucial to reduce systematic error !

Computing at IHEP

Disk space: 1.2 PB by the end of this year

A PC farm (100 GPU) will be built for PWA

Physics program at BESIII

Charmonium physics

- -- Spectroscopy and decays
- -- New hidden charm

Light hadron

- -- Establish spectrum of light hadrons
- -- Search for non-conventional hadrons
- -- Understand how hadrons are formed

Charm physics

- -- Decay constant, form factors
- -- D⁰ D⁰ mixing and CPV
- -- CKM: Vcs and Vcd

Tau and QCD

- -- Tau mass and Tau decays
- -- QCD: R values ...

BESIII physics results

- BESIII results published
 - Branching fraction measurements of χ_{c0} and χ_{c2} to $\pi^0 \pi^0$ and $\eta\eta$ PRD 81, 052005 (2010)
 - Measurements of $h_c({}^1P_1)$ in ψ' decays PRL 104, 132002 (2010)
 - Observation of a ppbar mass threshold enhancement in ψ' ->π⁺π⁻ J/ψ(J/ψ->γppbar) decay CPC 34 (2010)

CLEO-c used their own measured BRs for $\psi \rightarrow \gamma \chi_{cJ}$ decays.

Observation of $h_c({}^1P_1): \psi(2S) \rightarrow \pi^0 h_c \rightarrow \gamma \eta_c$

BESIII: PRL 104, 132002 (2010)

- Select inclusive π^0 ($\psi' \rightarrow \pi^0 h_c$)
- Select E1-photon γ to tag $h_c \rightarrow \gamma \eta_c$
- Double-Gaussian ⊗ BW signal + E1-photon sideband background.

Results:

- $\operatorname{Br}(\psi' \to \pi^0 \mathbf{h}_c) \times \operatorname{Br}(\mathbf{h}_c \to \gamma \eta_c) =$ (4.58±0.40±0.50) ×10⁻⁴
- $M = 3525.40 \pm 0.13 \pm 0.18 \text{ MeV/c}^2$
- $\Gamma = 0.73 \pm 0.45 \pm 0.28$ MeV (<1.44 MeV 90%C.L.)

3.8-

3.4 -

3.0-

 η_c

GeV/c²

Mass

 $\psi(2S)$

 h_c

Observation of h_c : $\psi(2S) \rightarrow \pi^0 h_c$ **Inclusive**

BESIII, PRL 104, 132002 (2010)

- Select inclusive π^0 ($\psi' \rightarrow \pi^0 h_c$)
- D-Gaussian \otimes BW signal + 4th Poly. bkg
- Fit: mass and width fixed as tagged measurement

Combined with tagged Events/1MeV BESIII 50000 results, we firstly measured: 2500 40000 2000 Br($\psi' \rightarrow \pi^0 h_c$) 1500 30000 1000 $=(8.4\pm1.3\pm1.0)\times10^{-4}$ 500 20000 • Br($h_c \rightarrow \gamma \eta_c$) -500 10000 ·1000 3.51 3.52 3.53 3.54 $=(54.3\pm6.7\pm5.2)\%$ 0 3.51 3.52 3.53 3.54

 π^0 recoil mass (GeV/c²)

h_c: analysis summary

BESIII, PRL 104, 132002 (2010)

	BESIII	CLEOc		
Br ($\psi' \rightarrow \pi^0 h_c$) × Br (h_c $\rightarrow \gamma \eta_c$) [10 ⁻⁴]	4.58 \pm 0.40 \pm 0.50	4. $19 \pm 0.32 \pm 0.45$		
M [MeV/ c^2]	3525. 40 ±0. 13±0. 18	3525.80 ±0.23±0.15		
Γ [MeV]	0.73±0.45±0.28 <1.44 @ 90%CL	1.1 (NRQCD) Kuang 0.51 (PQCD) Kuang		
$\Delta M_{ m hf}(1P)$ [MeV/c ²]	$0.10 \pm 0.13 \pm 0.18$	$0.08 \pm 0.18 \pm 0.12$		
CLEO-c Collaboration, Phys.Rev.Lett.101:182003,2008				
	BESIII	theoretical prediction		
Br ($\psi' \rightarrow \pi^0 h_c$) [10 ⁻⁴]	8.4 \pm 1.3 \pm 1.0	4 - 13		
$Br(h_c \rightarrow \gamma \eta_c)$	54.3±6.7±5.2	41 (NRQCD) Kuang		
		88 (PQCD) Kuang		
		38 Godfrey, Rosner		

Theoretical predictions: PRD65, 094024 (2002) & PRD 66, 014012 (2002)

More charmonium results

- ► First evidence of $\psi' \rightarrow \gamma \gamma J/\psi$
- → First evidence of $\psi' \rightarrow \gamma P$ (P= π^0 , η)
- ► First measurement of $\chi_{cJ} \rightarrow 4\pi^0$
- ≻ Study of χ_{cJ} → γV (V= ρ, ω, ϕ)
- ≻ Study of χ_{cJ} → VV (V= ω, ϕ)

For more details, see

L.L. Wang (Saturday afternoon session)
 Recent results from Chamonium decays at BESIII

pp threshold enhancement @ BESII

pp threshold enhancement @ BESIII

BESIII: Chinese Physics C 34(2010)421

Consistent observation by BESIII !

X(1860) not found in other decays

X(1835) at BESII

Confirmation of X(1835) and observation of two new resonances at BESIII

More light haron results

- > Observation of $X(1870) \rightarrow a_0(980)\pi$ in $J/\psi \rightarrow \omega \pi^+ \pi^- \eta$
- > Study of $a_0(980) f_0(980)$ mixing from $J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi$ $\chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$
- > Measurement of the matrix element from $\eta' \rightarrow \pi^+ \pi^- \eta$

For more details, see

Y. Chen (Saturday afternoon session)
 Recent results on light hadron spectroscopy at BESIII

Charm physics at BESIII

- $\psi(3770)$ experimental data
 - being reprocessed with new software
- Physics analysis
 - in progress
- Physics prospects at BESIII, see talks of Ron Poling, Roy Briere and Dan Hennessey on Friday

Data taking plan

- Coming round (to be decided next week)
 - 1 billion J/ψ events (3~5 months)
 - $\quad 200 \ pb^{-1} \ data \ at \ \psi(4040) \ for \ XYZ \ particles$
 - ψ(3770)
 - Other proposals?
- Long term plan
 - 10 B J/ ψ events
 - $3 \mathbf{B} \mathbf{\psi}(\mathbf{2S})$
 - $\quad 20 \ fb^{-1} \ \psi(3770) + \psi(4040) + \psi(4160)$
 - R scan/resonance scan: 2 ~ 4.6 GeV
 - Tau physics

Detector upgrade plan

- Beam energy measurement system
- Inner tracker detector
- Endcap TOF counter

BESIII Beam Energy Measurement

•First BESIII upgrade

- •Collaboration by IHEP, BINP, and U. of Hawaii
- •System to be tested and installed this year

Expected resolution at BESIII $\rightarrow \Delta m_{\tau} \approx 0.08 \text{ MeV/c}^2$; $\Delta \varepsilon = 40 \text{ keV}$ $PDG08, \Delta m_{\tau} \approx 0.17 \text{ MeV/c}^2$

Inner MDC upgrade

Much noisy at high beam current (<650mA)
May not work in the future

Upgrade options:

- CGEM (CLOE2 inner tracker)
- Si pixel (STAR vertex / BELLEII pixel)
- Si micro strip (BELLEII vertex/SuperSVD)

MC study was done with TRAERR

ETOF upgrade

A prototype of MRPC is made
Beam test is prepared
Expected time resolution 80 ps

Summary

- BEPCII/BESIII had been successfully constructed and commissioned with excellent performance
- BEPCII has reached a luminosity of 3.3×10³²cm⁻²s⁻¹, hopefully there will be a big increase in the coming run
- BESIII detector has reached its designed goal. Large data samples of J/ ψ , ψ (2S) and ψ (3700) and have been accumulated
- BESIII has obtained/published good physics results, much more will come soon

BESIII Collaboration

