The X(3872) and X,Y,Z states

E. Oset¹, D. Gamermann¹, R. Molina¹, J. Nieves¹, E. Ruiz Arriola², T. Branz³
1) IFIC, University of Valencia,
2) University of Granada
3) University of Tuebingen

The X(3872) as a D D*bar molecule Role of charged and neutral channels. Isospin considerations Some X,Y,Z states as hidden charm vector-vector molecules Radiative decay of these X,Y,Z states. Hidden gauge formalism for vector mesons, pseudoscalars and photons Bando et al. PRL, 112 (85); Phys. Rep. 164, 217 (88)

$$\mathcal{L} = \mathcal{L}^{(2)} + \mathcal{L}_{III} \tag{1}$$

with

$$\mathcal{L}^{(2)} = \frac{1}{4} f^2 \langle D_\mu U D^\mu U^\dagger + \chi U^\dagger + \chi^\dagger U \rangle \tag{2}$$

$$\mathcal{L}_{III} = -\frac{1}{4} \langle V_{\mu\nu} V^{\mu\nu} \rangle + \frac{1}{2} M_V^2 \langle [V_\mu - \frac{i}{g} \Gamma_\mu]^2 \rangle, \qquad (3)$$

where $\langle ... \rangle$ represents a trace over SU(3) matrices. The covariant derivative is defined by

$$D_{\mu}U = \partial_{\mu}U - ieQA_{\mu}U + ieUQA_{\mu}, \tag{4}$$

with Q = diag(2, -1, -1)/3, e = -|e| the electron charge, and A_{μ} the photon field. The chiral matrix U is given by

$$U = e^{i\sqrt{2}\phi/f} \tag{5}$$

$$\phi \equiv \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta_{8} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta_{8} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta_{8} \end{pmatrix}, \ V_{\mu} \equiv \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}_{\mu}.$$
(6)

In \mathcal{L}_{III} , $V_{\mu\nu}$ is defined as

$$V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} - ig[V_{\mu}, V_{\nu}]$$
⁽⁹⁾

 and

$$\Gamma_{\mu} = \frac{1}{2} \left[u^{\dagger} (\partial_{\mu} - ieQA_{\mu})u + u(\partial_{\mu} - ieQA_{\mu})u^{\dagger} \right]$$
(10)

with $u^2 = U$. The hidden gauge coupling constant g is related to f and the vector meson mass (M_V) through

$$g = \frac{M_V}{2f},\tag{11}$$

$$\mathcal{L}_{V\gamma} = -M_V^2 \frac{e}{g} A_\mu \langle V^\mu Q \rangle$$
$$\mathcal{L}_{V\gamma PP} = e \frac{M_V^2}{4gf^2} A_\mu \langle V^\mu (Q\phi^2 + \phi^2 Q - 2\phi Q\phi) \rangle$$
$$\mathcal{L}_{VPP} = -i \frac{M_V^2}{4gf^2} \langle V^\mu [\phi, \partial_\mu \phi] \rangle$$

$$\mathcal{L}_{III}^{(c)} = \frac{g^2}{2} \langle V_\mu V_\nu V^\mu V^\nu - V_\nu V_\mu V^\mu V^\nu \rangle , \qquad \qquad \mathcal{L}_{III}^{(3V)} = ig \langle (\partial_\mu V_\nu - \partial_\nu V_\mu) V^\mu V^\nu \rangle ,$$

The Lagrangians are extended to SU(4), but it is broken because the exchange of heavy vector mesons is much reduced compared to the light ones.

$$\Phi = \begin{pmatrix} \frac{\eta}{\sqrt{3}} + \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta'}{\sqrt{6}} & \pi^{+} & K^{+} & \overline{D}^{0} \\ \pi^{-} & \frac{\eta}{\sqrt{3}} - \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta'}{\sqrt{6}} & K^{0} & D^{-} \\ K^{-} & \overline{K}^{0} & \sqrt{\frac{2}{3}}\eta' - \frac{\eta}{\sqrt{3}} & D_{s}^{-} \\ D^{0} & D^{+} & D_{s}^{+} & \eta_{c} \end{pmatrix}$$
$$\mathcal{V}_{\mu} = \begin{pmatrix} \frac{\rho_{\mu}^{0}}{\sqrt{2}} + \frac{\omega_{\mu}}{\sqrt{2}} & \rho_{\mu}^{+} & K_{\mu}^{*+} & \overline{D}_{\mu}^{*0} \\ \rho_{\mu}^{*-} & \frac{-\rho_{\mu}^{0}}{\sqrt{2}} + \frac{\omega_{\mu}}{\sqrt{2}} & K_{\mu}^{*0} & D_{\mu}^{*-} \\ K_{\mu}^{*-} & \overline{K}_{\mu}^{*0} & \phi_{\mu} & D_{s\mu}^{*-} \\ D_{\mu}^{*0} & D_{\mu}^{*+} & D_{s\mu}^{*+} & J/\psi_{\mu} \end{pmatrix}.$$

$$\mathcal{M}_{ij}^C(s,t,u) = \frac{-\xi_{ij}^C}{4f^2}(s-u)\epsilon \cdot \epsilon'.$$

Vector – pseudoscalar interaction

This kernel projected over s-wave and used as kernel In the Bethe Salpeter equation.

Charm	Strangeness	$I^G(J^{PC})$	Channels	
1	1	1(1+)	$ \begin{array}{c} \pi D_s^*, D_s \rho \\ K D^*, D K^* \end{array} $	
		$0(1^+)$	$DK^*, KD^*, \eta D_s^*$ $D_s \omega, \eta_c D_s^*, D_s J/\psi$	
	0	$\frac{1}{2}(1^+)$	$\pi D^*, D ho, KD^*_s, D_sK^*$ $\eta D^*, D\omega, \eta_c D^*, DJ/\psi$	
	-1	$0(1^+)$	DK^*, KD^*	
0	1	$\frac{1}{2}(1^+)$	$\pi K^*, K ho, \eta K^*, K\omega$ $ar{D}D^*_s, D_sar{D}^*, KJ/\psi, \eta_cK^*$	X(3872)
	0	1+(1+-)	$\frac{\frac{1}{\sqrt{2}}(\bar{K}K^* + c.c.), \pi\omega, \eta\rho}{\frac{1}{\sqrt{2}}(\bar{D}D^* + c.c.), \eta_c\rho, \pi J/\psi}$	
		$1^{-}(1^{++})$	$\pi\rho, \frac{1}{\sqrt{2}}(\bar{K}K^* - c.c.), \frac{1}{\sqrt{2}}(\bar{D}D^* - c.c.)$	
		$0^+(1^{++})$	$\frac{1}{\sqrt{2}}(\bar{K}K^* + c.c.), \ \frac{1}{\sqrt{2}}(\bar{D}D^* + c.c.), \ \frac{1}{\sqrt{2}}(\bar{D}_sD^*_s - c.c.)$	
		$0^{-}(1^{+-})$	$\pi \rho, \eta \omega, \frac{1}{\sqrt{2}} (\bar{D}D^* - c.c.), \eta_c \omega \\ \eta J/\psi, \frac{1}{\sqrt{2}} (\bar{D}_s D_s^* + c.c.), \frac{1}{\sqrt{2}} (\bar{K}K^* - c.c.), \eta_c J/\psi$	

 $\mathcal{M}_{ij}^{C}(s,t,u) = \frac{-\xi_{ij}^{C}}{4\epsilon^{2}}(s-u)\epsilon \cdot \epsilon'$. Projected over s-wave

$$\frac{4f^2}{T} = V + VGT$$

$$\begin{split} G_{ii} &= \frac{1}{16\pi^2} \bigg(\alpha_i + Log \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} Log \frac{m_2^2}{m_1^2} \\ &+ \frac{p}{\sqrt{s}} \bigg(Log \frac{s - m_2^2 + m_1^2 + 2p\sqrt{s}}{-s + m_2^2 - m_1^2 + 2p\sqrt{s}} \\ &+ Log \frac{s + m_2^2 - m_1^2 + 2p\sqrt{s}}{-s - m_2^2 + m_1^2 + 2p\sqrt{s}} \bigg) \bigg) \end{split}$$

One searches for poles in the complex plane: they correspond to bound states or resonances.

С	Irrep	S	$\mathrm{I}^{G}(J^{PC})$	$\operatorname{RE}(\sqrt{s})$ (MeV)	$IM(\sqrt{s}) (MeV)$	Resonance ID
	Mass (MeV)					
1	$\bar{3}$	1	$0(1^+)$	2455.91	0	$D_{s1}(2460)$
	2432.63	0	$\frac{1}{2}(1^+)$	2311.24	-115.68	$D_1(2430)$
	6	1	$\bar{1}(1^+)$	2529.30	-238.56	(?)
	2532.57	0	$\frac{1}{2}(1^+)$	Cusp~(2607)	Broad	(?)
	-i199.36	-1	$0(1^+)$	Cusp~(2503)	Broad	(?)
		1	$0(1^+)$	2573.62	-0.07	$D_{s1}(2536)$
	3				[-0.07]	
	2535.07	0	$\frac{1}{2}(1^+)$	2526.47	-0.08	$D_1(2420)$
	-i0.08				[-13] *	
	6	1	$1(1^+)$	2756.52	-32.95	(?)
					[cusp]	
	Cusp (2700)	0	$\frac{1}{2}(1^+)$	2750.22	-99.91	(?)
					[-101]	
	Narrow	-1	$0(1^{+})$	2756.08	-2.15	(?)
					[-92]	
0	1	0	$0^{-}(1^{+-})$	925.12	-24.61	$h_1(1170)$
	1055.77				<u> </u>	
	8	1	$\frac{1}{2}(1^+)$	1101.72	-56.27	$K_1(1270)$
	1161.06	0	$1^+(1^{+-})$	1230.15	-47.02	$b_1(1235)$
			$0^{-}(1^{+-})$	1213.00	-5.67	$h_1(1380)$
		0	$0^+(1^{++})$	3837.57	-0.00	$X(3872) \blacktriangleleft$
	3867.59	-1	1(1+)	1010.00	0.00	$U_{(1270)}$
	8		$\frac{1}{2}(1^+)$	1213.20	-0.89	$\frac{K_1(1270)}{(1000)}$
	1161.37	0	1(1'')	1012.95	-89.77	$a_1(1260)$
	1		$0^{+}(1^{++})$	1292.96	0	$f_1(1285)$ (2)
			\cup (1')	3840.69	-1.60	(:) 📕
	3804.02					
	-10.00					

RESULTS

Results in brackets When considering finite width of ρ and K* mesons

Light states, a1 b1 ... first studied by Kolomeitsev and Lutz, later by Roca, Singh, E. O.

Hidden charm predicted states. They are nearly degenerate but with opposite C-parity.

K.Terasaki, 07 also advocates for two different C-parity states X(3872) state S=0, 0⁺(1⁺⁺). Qualitative discussion: take the main channel, Dbar D* - cc , and separate $|D^0 \overline{D}^{*0}\rangle |D^+ D^{*-}\rangle$ as channels 1 and 2

$$V = \begin{pmatrix} v & v \\ v & v \end{pmatrix} \qquad T = \frac{V}{1 - vG_{11} - vG_{22}}$$
$$T_{ij} = \frac{g_i g_j}{s - s_R}$$
$$\lim_{s \to s_R} (s - s_R) T_{ij} = \lim_{s \to s_R} (s - s_R) \frac{V_{ij}}{1 - vG_{11} - vG_{22}}$$
$$\lim_{s \to s_R} (s - s_R) T_{ij} = \frac{V_{ij}}{-v(\frac{dG_{11}}{ds} + \frac{dG_{22}}{ds})}$$

The coupling of the resonance to the two channels is the same

One could interpret is as having a wave function:

 $DD^*bar(I=0)=D^0D^{*0}bar+D^+D^{*-}+cc$, which would correspond to I=0

But wait, wave functions in coordinate space need care: coming later

Isospin breaking in the X(3872) resonance

Daniel Gamermann and E. Oset, Phys. Rev. D

Many works consider X(3872) as a bound state of D⁰ D^{*0} E. Swanson, E. Braaten, Lyubovitskij, Dong, Gutsche

We perform a coupled channel approach with different masses for $D^0 D^{*0}$ and $D^+ D^{*-}$ (and cc of both). The result is that even

if the binding energy of $D^0 D^{*0}$ is very small one still has a very good I=0 wave function.

$$R_{
ho/\omega}~=~0.032$$
 With fixed masses of ho and ω

Considering the mass distributions of ρ and ω

$$\frac{\mathcal{B}(X \to J/\psi\pi\pi)}{\mathcal{B}(X \to J/\psi\pi\pi\pi)} = \left(\frac{G_{11} - G_{22}}{G_{11} + G_{22}}\right)^2 \frac{\int_0^\infty q\mathcal{S}\left(s, m_\rho, \Gamma_\rho\right)\theta\left(m_X - m_{J/\psi} - \sqrt{s}\right) \, ds}{\int_0^\infty q\mathcal{S}\left(s, m_\omega, \Gamma_\omega\right)\theta\left(m_X - m_{J/\psi} - \sqrt{s}\right) \, ds} \frac{\mathcal{B}_\rho}{\mathcal{B}_\omega}$$

$$\frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1.4$$

We can describe this ratio with no isospin breaking of the X(3872) wave function

If we had only D⁰ D^{*0} that ratio would be 50 times smaller !!

Wave functions in momentum and coordinate space

$$\begin{split} \langle \vec{p}\,'|V|\vec{p}\rangle = V(\vec{p}\,',\vec{p}) = v\,\Theta(\Lambda-p)\Theta(\Lambda-p') & v = \begin{pmatrix} \hat{v} \ \hat{v} \ \hat{v} \\ \hat{v} \ \hat{v} \end{pmatrix} \\ T = V + V \frac{1}{E - H_0}T & \longrightarrow \langle \vec{p}\,|T|\vec{p}\,'\rangle = \Theta(\Lambda-p)\Theta(\Lambda-p')\,t \\ t = (1 - vG)^{-1}v & \longrightarrow G = \begin{pmatrix} G_{11} & 0 \\ 0 & G_{22} \end{pmatrix}, \quad G_{ii} = \int_{p < \Lambda} \frac{d^3p}{E - M_i - \frac{\vec{p}^2}{2\mu_i}} \\ = \frac{1}{1 - \hat{v}G_{11} - \hat{v}G_{22}}v & \longrightarrow g_1^2 = g_2^2 \equiv g^2 = \lim_{E \to E_\alpha} (E - E_\alpha)t_{ij} \\ = -\left(\frac{dG_{11}}{dE} + \frac{dG_{22}}{dE}\right)^{-1}\Big|_{E = E_\alpha} \\ (H_0 + V)|\psi\rangle = E|\psi\rangle & \langle \vec{p}\,|\psi_1\rangle = \frac{1}{G_{11}^\alpha} \frac{\Theta(\Lambda-p)}{E_\alpha - M_1 - \frac{\vec{p}^2}{2\mu_1}} \int_{k < \Lambda} d^3k \langle \vec{k}|\psi_1\rangle \\ \langle \vec{p}\,|\psi_2\rangle = \frac{1}{G_{11}^\alpha} \frac{\Theta(\Lambda-p)}{E_\alpha - M_2 - \frac{\vec{p}^2}{2\mu_2}} \int_{k < \Lambda} d^3k \langle \vec{k}|\psi_1\rangle \\ \langle \vec{x}|\psi\rangle = \int d^3p \langle \vec{x}\,|\vec{p}\,\rangle \langle \vec{p}\,|\psi\rangle & gG_{11}^\alpha = (2\pi)^{3/2}\psi_1(\vec{0}) = \hat{\psi}_1 \\ = \int \frac{d^3p}{(2\pi)^{3/2}} e^{i\vec{p}\cdot\vec{x}} \langle \vec{p}\,|\psi\rangle. \end{split}$$

The wave functions at the origin for the neutral and charged components are very similar: for short range interactions of the strong interaction this is what matters and what determines the isospin of the state. It does not matter that the probability of the neutral component is

much bigger.

Hidden charm states from the interaction of vector mesons R. Molina, E. Oset PRD 2010

We take the vectors of the table, use the hidden gauge Lagrangians and study their interaction in the coupled channel unitary approach. We get three states around 3940 MeV with 0⁺⁺,1⁺⁺,2⁺⁺, and one around 4160 MeV with 2⁺⁺

$$T_{ij} = \frac{g_i g_j}{s - s_R}$$
 We look for poles of the T-matrix, the residues give the couplings of the resonance to channels

$$\sqrt{s_{pole}} = 3922 + i26, I^G[J^{PC}] = 0^+[2^{++}]^{\leftarrow}$$

1)

	$D^*\bar{D}^*$	$D_s^* \bar{D}_s^*$	$K^*\bar{K}^*$	$\rho\rho$	$\omega\omega$
7	21100 - i1802	1633 + i6797	$7 42 + i14 \cdot$	-75 + i37	1558 + i1821
	$\phi\phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	b $\omega\phi$
	-904 - i1783	1783 + i197	-2558 - i2289	9 918 + i2	921 91 - i784

To be associated with Z(3930) of Belle, seen in $\gamma\gamma \rightarrow D$ barD $0^{++},2^{++}$ but 2^{++} preferred because of angular correlations

State	M (MeV)	Γ (MeV)	J^{PC}	Decay modes	Production modes
Z(3940)	3929 ± 5	29 ± 10	2^{++}	$D\bar{D}$	$\gamma\gamma$
X(3940)	3942 ± 9	37 ± 17	J^{P+}	$D\bar{D}^*$	$e^+e^- \rightarrow J/\psi X(3940)$
Y(3940)	3943 ± 17	87 ± 34	J^{P+}	$\omega J/\psi$	$B \to KY(3940)$
	$3914.3_{-3.8}^{+4.1}$	33^{+12}_{-8}			
X(4160)	4156 ± 29	139^{+113}_{-65}	J^{P+}	$D^*\bar{D}^*$	$e^+e^- \rightarrow J/\psi X(4160)$

$I^G[J^{PC}]$	Theory		Experiment				
	Mass [MeV]	Width [MeV]	Name	Mass [MeV]	Width [MeV]	J^{PC}	
$0^{+}[0^{++}]$	3943	17	Y(3940)	3943 ± 17 $3914 \ 3^{+4.1}$	87 ± 34 33^{+12}	J^{P+}	
$0^{-}[1^{+-}]$	3945	0	$Y_p(3945)$	0014.0_3.8	55_8		
$0^+[2^{++}]$ $0^+[2^{++}]$	3922 4157	55 109	Z(3930) V(4160)	3929 ± 5	29 ± 10 120 ⁺¹¹³	2^{++}_{IP+}	
$1^{-}[2^{++}]$	4157 3912	$\frac{102}{120}$	$"Y_p(3912)"$	4130 ± 29	139_{-65}^{+}	J - '	

the X(4160)

This state also described as D_s* D_s*bar in Dong, Lyubovitskij, Gutsche, T, Branzusing the Weinberg compositeness method.

Radiative decay of The X,Y,Z states , T. Branz, R. Molina, E. O.

Channel	1		
	$3943 + i7.4, 0^+[0^{++}]$	$3922 + i26, 0^+[2^{++}]$	$4169 + i66, \ 0^+[2^{++}]$
ρρ	-22 + i47	-75 + i37	70 + i20
ωω	1348 + i234	1558 + i1821	3 - i2441
$\phi\phi$	-1000 - i150	-904 - i1783	1257 + i2866
$J/\psi J/\psi$	417 + i64	1783 + i197	2681 + i940
$\omega\phi$	-215 - i107	91 - i784	1012 + i1522
$\omega J/\psi$	-1429 - i216	-2558 - i2289	-866 + i2752
$\phi J/\psi$	889 + i196	918 + i2921	-2617 - i5151

TABLE I: Couplings g_i in units of MeV for the resonances with I = 0.

pole [MeV]	$I^G J^{PC}$	meson	$\Gamma_{\rho\gamma}[\text{KeV}]$	$\Gamma_{\omega\gamma}[{ m KeV}]$	$\Gamma_{\phi\gamma}[{\rm KeV}]$	$\Gamma_{J/\psi\gamma}[{\rm KeV}]$	$\Gamma_{\gamma\gamma}[{\rm KeV}]$
(3943, +i7.4)	$0^+ (0^{++})$	Y(3940)	0.015	0.989	13.629	0.722	0.013
(3922, +i26)	$0^{+}(2^{++})$	Z(3930)	0.040	15.155	95.647	13.952	0.083
(4169, +i66)	$0^+(2^{++})$	X(4160)	0.029	10.659	268.854	125.529	0.363
(3919, +i74)	$1^{-}(2^{++})$ "	$Y_p(3912)'$	201.458	114.561	62.091	135.479	0.774
 pole [MeV]	$I^G J^{PC}$	mes	son Γ	$\gamma_{\gamma\gamma}^{\rm new}[{ m KeV}]$	-		
(3943, +i7.4)	$0^{+}(0^{++})$	Y(39)	940)	0.085	-		
(3922, +i26)	$0^+ (2^{++})$	Z(39)	930)	0.074			
(4169, +i66)	$0^{+}(2^{++})$	X(4)	160)	0.54	-		
(3919, +i74)	$1^{-}(2^{++})$	$Y_p(3$	912)'	1.11			

Belle Collaboration, S. Uehara, PRL 2010

$$\Gamma_{\gamma\gamma}(X(3915))\mathcal{B}(X(3915) \to \omega J/\psi) = \begin{cases} (61 \pm 17 \pm 8) \ \mathbf{eV} & \text{for } J^P = 0^+ \\ (18 \pm 5 \pm 2) \ \mathbf{eV} & \text{for } J^P = 2^+ \end{cases}$$

We can calculate
$$\Gamma_{\omega J/\psi(0^+,3943)} = 1.52 \text{ MeV}$$

 $\Gamma_{\omega J/\psi(2^+,3922)} = 8.66 \text{ MeV}$

And also
$$\Gamma_{\gamma\gamma}\mathcal{B}((0^+, 3943) \to \omega J/\psi) = 7.6 \text{ eV}$$
$$\longrightarrow \Gamma_{\gamma\gamma}\mathcal{B}((2^+, 3922) \to \omega J/\psi) = 11.8 \text{ eV}$$

The state with 2⁺ is clearly preferred by these data.

Conclusions:

The X(3872) as a $0^+(1^{++})$ state of D Dbar^{*}, requires the charged and neutral components. Their wave functions at small distances are similar \rightarrow determines the I=0 character of this resonance.

Some of the X,Y,Z states around 4000 MeV can be acommodated as V-V molecules with hidden charm: masses, widths and partial decay widths seem to match within the limited experimental information.