

Absolute measurements of Pure leptonic D_s decays and f_{Ds} decay constant from BaBar

Aidan Randle-Conde, on behalf of the BaBar Collaboration

Charm 2010 2010-10-22

Aidan Randle-Conde, Southern Methodist University

Overview

- The BaBar experiment
- Motivation
- Reconstruction
- Systematic uncertainties
- Results
- Summary and conclusion

The BaBar experiment

3

- The BaBar detector is at the SLAC National Accelerator Laboratory, home of the PEP-II asymmetric energy e⁺e⁻ collider.
- The experiment was an excellent B, charm and T factory, generating over 700 million cc pairs, from December 1999 to April 2008.

Motivation

4

□ In the standard model the leptonic decays of the D_s meson provide a clean way to measure the decay constant f_{Ds} :

$$B(D_s \rightarrow l\upsilon) = \frac{\Gamma(D_s \rightarrow l\upsilon)}{\Gamma(D_s \rightarrow all)} = \frac{G_F^2}{8\pi} |V_{cs}|^2 f_{D_s}^2 M_{D_s}^3 \left(\frac{m_l}{M_{D_s}}\right)^2 \left(1 - \frac{m_l^2}{M_{D_s}^2}\right)^2$$

Motivation

In October 2009 unquenched lattice QCD (UL-QCD) calculations of the decay constant f_{Ds} disagree with experimental results by 2σ:

a 2.0 σ discrepancy, or $1.8\sigma \oplus 1.6\sigma \oplus -0.3\sigma$.

Motivation

□ This discrepancy could be the result of new physics:

SUSY

More details in the backup slides.

Analysis strategy

- The event reconstruction allows an absolute measurement of branching fractions.
- The number of D_s mesons produced at BaBar is measured (the denominator.)
- □ The number of $D_s \rightarrow l \nu$ events is measured (the numerator.)
- The branching fraction is obtained by calculating the efficiency corrected ratio of these numbers.
- □ This analysis uses the entire dataset, including Y(4S), Y(3S), Y(2S) and off-peak data.

Event reconstruction

8

The event topology is split into two halves:

- Tag side
 - Charm tag (D)
 - Flavor balancing kaon (K)
 - Baryon balancing proton (p)
 - Fragmentation system (X)
- Signal side
 - D_s meson (D_s)
 - Photon (γ)
 - Lepton (1)

Charm tag reconstruction

9

The charm tag is reconstructed in the following modes:

D ⁰		D+		Λ ٫+	
Mode	Branching fraction	Mode	Branching fraction	Mode	Branching fraction
D ⁰ →K ⁻ π ⁺	3.9%	$D^+ \rightarrow K^- \pi^+ \pi^+$	9.4%	$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$	5.0%
D ⁰ →K ⁻ π ⁺ π ⁰	13.9%	$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$	6.1%	Λ _c ⁺ →pK ⁻ π ⁺ π ⁰	3.4%
D ⁰ →K ⁻ π ⁺ π ⁻ π ⁺	8.1%	$D^+ \rightarrow K^0_{S} \pi^+$	1.5%	$\Lambda_{c}^{+} \rightarrow pK_{S}^{0}$	1.1%
$D^0 \rightarrow K^0{}_{S}\pi^+\pi^-$	2.9%	$D^+ \rightarrow K^0{}_S \pi^+ \pi^0$	6.9%	$_{c}^{+} \rightarrow \bigwedge \pi^{+}$	1.1%
$D^0 \rightarrow K^- \pi^+ \pi^- \pi^+ \pi^0$	4.2%	$D^+ \rightarrow K^0_{\ S} \pi^+ \pi^- \pi^+$	3.1%	$_{c}{}^{+} \rightarrow \bigwedge \pi^{+} \pi^{0}$	3.6%
$D^0 \rightarrow K^0_{\ S} \pi^+ \pi^- \pi^0$	5.4%			$\bigwedge_{c}^{+} \rightarrow \bigwedge \pi^{+} \pi^{-} \pi^{+}$	2.6%
				$\Lambda_{c}^{+} \rightarrow \Sigma \pi^{+}$	1.1%

Charm tag selection

10

- The charm tag modes selections were optimized with respect to significance using 8fb⁻¹ of data.
- Selection variables are:
 - tag mass.
 - particle identification.

- **P**(χ^2 |n) of a kinematic fit of the tag.
- □ Significance ranges from 9 ($\Lambda_c^+ \rightarrow \Sigma \pi^+$) to 350 ($D^0 \rightarrow K^- \pi^+$)
- □ Tags are 74% D⁰, 23% D⁺, 4% Λ_{c}^{+} .

Fragmentation system

- The energy at BaBar is far above cc̄ production threshold.
- Additional mesons are produced at the interaction point.
- We reconstruct the fragmentation system in the following states:

No pions	π^{\pm}	$\pi^{\pm}\pi^{\pm}$	$\pi^{\pm}\pi^{\pm}\pi^{\pm}$
π ⁰	$\pi^{\pm}\pi^{0}$	$\pi^{\pm}\pi^{\pm}\pi^{0}$	

 \Box K \overline{K} contributions are negligible.

Fragmentation system

The reconstruction of the fragmentation system is often incomplete due to:

Misreconstruction.

Missing particles in the event.

Particle identification efficiency effects.

Define:

- \square n_X^T as the true number of pions from fragmentation.
- n_X^R as the reconstructed number of pions from fragmentation.
- □ Unfold the n_X^T distribution from n_X^R .

- A D_s^{*+} meson is reconstructed recoiling against the DKX system.
- □ A photon consistent with the decay $D_s^{*+} \rightarrow D_s^+ \gamma$ is identified.
- A kinematic fit is performed to the whole event.

□ The mass of the D_s^{*+} candidate is then constrained to the mass provided by the Particle Data Group.

- □ We define right sign and wrong sign reconstructions:
 - Right sign: any reconstruction where the DKX system flavor and charge are consistent with recoiling against a D_s^{*+}.
 - Wrong sign: any reconstruction where the DKX system flavor and charge are not consistent with recoiling against a D_s^{*+}.
 - Other: any other reconstruction (eg where the charge of the system recoiling against the DKX system would be zero.)

D_s yield extraction

15

- □ The yield of Ds mesons is determined using a 2-D fit to:
 - Mass recoiling against the DKX γ system
 - n_X^R, the reconstructed number of pions in the fragmentation system.
- □ We obtain $n(D_s) = 67,200 \pm 1500$.

n_X^{T} unfolding

- 16
- While the 2-D fit is being performed the n_X^T distribution is unfolded.
- A weights model for each value of n_X^T=j is constructed:

$$w_j^{RS} = rac{(j-lpha)^eta e^{-\gamma j}}{\sum_{k=0}^6 (k-lpha)^eta e^{-\gamma k}}$$

1

This weights model accounts for data-Monte Carlo differences

$D_{s} \rightarrow KK\pi$ crosscheck

17

- □ To validate the D_s reconstruction technique a $D_s \rightarrow KK\pi$ crosscheck is used.
- Due to resonances, an efficiency weighted Dalitz plot is used.
- □ We obtain $B(D_s \rightarrow KK\pi) =$ (5.78 ± 0.20 ± 0.30) × 10⁻²
- Consistent with the Particle
 Data Group.

□ (5.50 ± 0.27) × 10⁻²

Extra energy

- An important variable in the analysis is the extra energy, E_{Extra}.
- \square $\mathsf{E}_{\mathsf{Extra}}$ is the energy in the calorimeter where:
 - Each cluster of calorimeter crystals does not overlap with the the candidates in the reconstruction.
 - Each cluster has a minimum energy of 30MeV.
- If the only remaining particles in the event are neutrinoes, we expect
 E_{Extra} to be very small.

$D_s \rightarrow e \nu$ reconstruction

- An electron candidate is identified, using standard particle identification techniques.
- The mass of the D_s candidate is constrained to the mass provided by the Particle Data Group.
- \square We require $E_{Extra} < 1 GeV.$
- □ A kinematic fit to the whole event is performed.
- A binned maximum likelihood fit to the mass squared recoiling against the DKX γ e system, m_m², is performed.

$D_s \rightarrow e \nu$ limit extraction

- 20
- \square We obtain a yield of 6.1 \pm 2.2 \pm 5.2 events.
- □ A Bayesian limit is obtained, assuming a uniform prior distribution for $B(D_s \rightarrow e \nu)$.
- Using Monte Carlo integration we obtain:

 $B(D_s \rightarrow e \nu) < 2.8 \times 10^{-4}$

$D_s \rightarrow \mu \nu$ reconstruction

21

The same fit and selection criteria are used to measure the branching fraction B(D_s→ µ ν).
 This time we identify a muon candidate.

We obtain events 274 \pm 17, which yields B(D_s $\rightarrow \mu \nu$) = (6.02 \pm 0.37 \pm 0.33) \times 10⁻³

$D_s \rightarrow \tau \nu$ reconstruction

We measure the final states

- $\Box \ \tau \rightarrow e \nu \ \nu$
- $\blacksquare \ \tau \rightarrow \mu \ \nu \ \nu$
- □ Particle identification procedure remains the same as for $D_s \rightarrow e \nu$ and $D_s \rightarrow \mu \nu$ as appropriate.
- □ For $D_s \rightarrow \tau \nu$; $\tau \rightarrow \mu \nu \nu$ we require $m_m^2 > 0.3$ GeV²c⁻⁴ to remove backgrounds from $D_s \rightarrow \mu \nu$ events.
- □ For $D_s \rightarrow \tau \nu$ decays we perform a binned maximum likelihood fit to E_{Extra} .

$D_s \rightarrow \tau \nu$ reconstruction

23

We obtain the following yields of events:

Mode	Yield	Branching fraction
$D_{s} \rightarrow \tau \ \nu \ ; \ \tau \rightarrow e \ \nu \ \nu$	408 ± 42	$(4.91 \pm 0.50 \pm 0.66) \times 10^{-2}$
$D_{s} \not\rightarrow \tau \ \nu \ ; \ \tau \rightarrow \mu \ \nu \ \nu$	340 ± 32	$(5.07 \pm 0.48 \pm 0.54) \times 10^{-2}$
Combined		$(5.00 \pm 0.35 \pm 0.49) \times 10^{-2}$

Systematic uncertainties

- Due to the nature of the reconstruction, most of the systematic uncertainties cancel out exactly.
- The remaining dominant systematic uncertainties arise from:

Decay mode	Dominant uncertainty	Contribution to uncertainty
$D_s \rightarrow e \nu$	n _x ^T weights model	2.8%
$D_s \rightarrow \mu \nu$	Signal and background models	3.4%
$D_{s} \not\rightarrow \tau \ \nu \ ; \ \tau \not\rightarrow e \ \nu \ \nu$	Background model	9.6%
$D_{s} \not\rightarrow \tau \ \nu \ ; \ \tau \rightarrow \mu \ \nu \ \nu$	Background model	11.7%

Results

25

$\hfill\square$ Values for f_{Ds} are obtained using the formula:

$$f_{D_s^+} = \frac{1}{G_F m_\ell \left(1 - \frac{m_\ell^2}{M_{D_s^+}^2}\right) |V_{cs}|} \sqrt{\frac{8\pi B(D_s^+ \to \ell\nu)}{M_{D_s^+} \tau_{D_s^+}}}$$

Decay mode	B(Ds→I ν)	f _{Ds}
$D_s \rightarrow \mu \nu$	$(6.02 \pm 0.37 \pm 0.33) \times 10^{-3}$	(265.7 ± 8.4 ± 7.9) MeV
$D_{s} \not\rightarrow \tau \ \nu \ ; \ \tau \not\rightarrow e \ \nu \ \nu$	$(4.91 \pm 0.50 \pm 0.66) \times 10^{-2}$	(247 ± 13 ± 17) MeV
$D_{s} \not\rightarrow \tau \ \nu \ ; \ \tau \rightarrow \mu \ \nu \ \nu$	$(5.07 \pm 0.48 \pm 0.54) \times 10^{-2}$	(243 ± 12 ± 14) MeV
Combined		(258.6 \pm 6.4 \pm 7.5) MeV

Results

26

□ These results are very competitive:

□ HPQCD (2010) give f_{Ds} = (248.0 ± 2.5) MeV (arXiv:1008.4018)

Conclusion and summary

27

BaBar used its entire dataset to provide precise absolute measurements of the branching fractions:

□
$$B(D_s \rightarrow e \nu) < 2.8 \times 10^{-4}$$

■ $B(D_s \rightarrow \mu \ \nu) = (6.02 \pm 0.37 \pm 0.33) \times 10^{-3}$

□
$$B(D_s \rightarrow \tau \nu) = (5.00 \pm 0.35 \pm 0.49) \times 10^{-2}$$

- B(D_s $\rightarrow \tau \nu$; $\tau \rightarrow e \nu \nu$)/B($\tau \rightarrow e \nu \nu$) = (4.91 ± 0.50 ± 0.66) × 10⁻²
- B(D_s $\rightarrow \tau \nu$; $\tau \rightarrow \mu \nu \nu$)/B($\tau \rightarrow \mu \nu \nu$) = (5.07 ± 0.48 ± 0.54) × 10⁻²

□ B(Ds→KK
$$\pi$$
) = (5.78 ± 0.20 ± 0.30) × 10⁻²

- The resulting value for f_{Ds} is competitive with the world average.
- □ These results give $f_{Ds} = (258.6 \pm 6.4 \pm 7.5)$ MeV
 - **1.0** σ from most recent UL-QCD expectation (HPQCD).
- Publication accepted by PRD-RC (arXiv:1008.4080).

Backup

- New physics potential
- Excited charm tag reconstruction
- Flavor and baryon balancing
- $\square D_{s} \rightarrow K_{S}K$ crosscheck

New physics potential

29

□ Is UQ-LQCD f_{Ds} calculation wrong?

- The same method gives high accuracy calculation for f_D.
- The disagreement increases as the lattice spacing decreases.
- We'd expect to see a similar disagreement for f_D.
 - Another analyst is currently measuring f_D using $B(D \rightarrow \mu \nu)$
- What about leptoquarks?
 - Limits on proton lifetime constrain possible models.
 - Measurements of $\tau \rightarrow \eta \nu$ and $D \rightarrow \mu \mu$ constrain couplings to the kinds of quarks. (eg leptoquarks would have to prefer the s quark to the d quark)
- And a Higgs?
 - A Higgs boson would tend to couple to the cs more than cd. This could be the first sign of a Higgs boson!

Excited charm tags

In order to "clean up" the event, we attempt to reconstruct excited charm tags in the decay modes:

$D^{*+} \rightarrow D^0 \pi^+$	$D^{*0} \rightarrow D^0 \pi^0$
$D^{*+}\rightarrow D^{+}\pi^{+}$	$D^{*0} \rightarrow D^0 \gamma$

- Reconstructions are **not** rejected if they fail to meet these criteria.
- Reconstructing these tags reducing combinatorial backgrounds in later reconstruction.

- We require flavor to be balanced in the event:
 - \square The charm tag balances the charm of the D_s meson.
 - An additional kaon is required to balance the strangeness of the D_s meson.
 - Both K[±] and K_s⁰ are considered
 - If a Λ_c^+ is present, a proton is required to balance the baryon number of the Λ_c^+ .

$D_s \rightarrow K_S K$ crosscheck

32

- □ Another crosscheck ($D_s \rightarrow K_S K$) is used to perform studies in the data:
 - This is not blind.
 - It's used mainly to check shapes of probability density functions.
 - It showed that the kinematic fit χ^2 distribution was not well modeled in MC.
 - Used to inform smearing and shifting of signal probability density function.

