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Applications

BOINC
is a framework.
is developed in C++.
is open source (LGPLv3).
provides an API.
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Application Programming Interface

BOINC’s API
is a set of C++ functions.

Note
Most of the functions and methods are written in C, so it is
possible to employ them from other programming languages.
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Functions

Functions return an error code of type integer.
Zero, means success.
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Standard Applications

Start and End

Firstly, we have to initialize the BOINC application:

Initialization Function
int boinc init();

When the application has finished, we have to call the finish
function.

Finish Function
int boinc finish(int status);
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Resolución de nombres de ficheros

File Names

Applications that use I/O files, have to employ the following
function:

File name resolve function
int boinc resolve filename(char *logical name, char
*physical name, int len);

File name resolve function
int boinc resolve filename s(char *logical name, std::string&
physical name);
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Resolución de nombres de ficheros

Example

Instead of using this:

Standard Function
f = fopen(“my file”,“r”);

We will use:

Opening a file in BOINC
string resolved_name;
retval = boinc_resolve_filename_s("my_file", resolved_name);
if (retval) fail("can’t resolve filename");
f = fopen(resolved_name.c_str(), "r");
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Resolución de nombres de ficheros

I/O wrappers

Porting applications to BOINC require to change all I/O file
functions fopen() by BOINC ones:

BOINC function
boinc fopen(char* path, char* mode);

This function is independent from OS platforms (Microsoft
Windows, GNU/Linux and MacOSX).
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Fault-tolerance

Checkpointing

Applications with long times to solution usually will want to
save intermediate execution points.
These points should have all the necessary information to
restore the computation from the last saved point.
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Fault-tolerance

Checkpointing
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Fault-tolerance
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Fault-tolerance

Checkpointing
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Fault-tolerance

Functions

Starting Checkpointing
int boinc time to checkpoint();

This function can be used as many times as needed.

Finishing Checkpointing
void boinc checkpoint completed();
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Critical Sections

Critical code

There are parts of an application that are critical in its
execution.
For this reason, we do not want to stop the execution of
those parts at any moment.
BOINC provides several functions to assure the execution
of any critical section without interruptions.
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Critical Sections

Functions

Starting the critical section
void boinc begin critical section();

Ending the critical section
void boinc end critical section();

Note
This is carried out automatically in the checkpoints.
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Application Progress

Progress Bar

The BOINC’s client shows the percentage of carried out work.
To update that percentage bar, we have to use the following:

Function
boinc fraction done(double fraction done);

The next function obtains the last computed percentage:

Function
double boinc get fraction done();
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Communication with the Client

Gathering information from the Client

The following functions obtain information from the client:

Functions
int boinc get init data p(APP INIT DATA*); int
boinc get init data(APP INIT DATA&);
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Communication with the Client

Obtained data

core version: Client’s version in digits.

app name: Application name.

project preferences: A XML text with the preferences of the user for the project.

user name: User name of the project.

team name: Team name of the user.

project dir: Absolute path of the project folder.

boinc dir: Absolute path of BOINC root’s folder.

wu name: The name of the Work Unit.

authenticator: The authenticator for this project.

slot: Slot number.

user total credit: Total credif of this user for the project.

user expavg credit: Average credit of the user per day.

team total credit: Total credit of the team for this project.

team expavg credit: Average credit of the team per day.

host info: A struct describing the HW and OS of the host.
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Standalone Mode

Checking the application

BOINC allows to run applications without the client.
The next function enables the “standalone”:

Standalone Function
int boinc is standalone(void);
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Asking for network connection

Networking
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Asking for network connection

Because of User Preferences
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Asking for network connection

Warning the user

The next function warns the user asking for allowance to
connect to the network:

Función
void boinc need network();
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Asking for network connection

Checking the network

The next function checks if the application can go on-line:

Función
int boinc network poll();
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Asking for network connection

Finishing the communications

When communications have been finished, we have to call the
following function:

Function
void boinc network done();
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Asking for network connection
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