
Introduction BOINC API

Developing BOINC applications

Daniel Lombraña González

March 5, 2010



Introduction BOINC API

Outline

1 Introduction

2 BOINC API
Standard Applications
Resolución de nombres de ficheros
Fault-tolerance
Critical Sections
Application Progress
Communication with the Client
Standalone Mode
Asking for network connection



Introduction BOINC API

Applications

BOINC
is a framework.
is developed in C++.
is open source (LGPLv3).
provides an API.



Introduction BOINC API

Application Programming Interface

BOINC’s API
is a set of C++ functions.

Note
Most of the functions and methods are written in C, so it is
possible to employ them from other programming languages.



Introduction BOINC API

Functions

Functions return an error code of type integer.
Zero, means success.



Introduction BOINC API

Standard Applications

Start and End

Firstly, we have to initialize the BOINC application:

Initialization Function
int boinc init();

When the application has finished, we have to call the finish
function.

Finish Function
int boinc finish(int status);



Introduction BOINC API

Resolución de nombres de ficheros

File Names

Applications that use I/O files, have to employ the following
function:

File name resolve function
int boinc resolve filename(char *logical name, char
*physical name, int len);

File name resolve function
int boinc resolve filename s(char *logical name, std::string&
physical name);



Introduction BOINC API

Resolución de nombres de ficheros

Example

Instead of using this:

Standard Function
f = fopen(“my file”,“r”);

We will use:

Opening a file in BOINC
string resolved_name;
retval = boinc_resolve_filename_s("my_file", resolved_name);
if (retval) fail("can’t resolve filename");
f = fopen(resolved_name.c_str(), "r");



Introduction BOINC API

Resolución de nombres de ficheros

I/O wrappers

Porting applications to BOINC require to change all I/O file
functions fopen() by BOINC ones:

BOINC function
boinc fopen(char* path, char* mode);

This function is independent from OS platforms (Microsoft
Windows, GNU/Linux and MacOSX).



Introduction BOINC API

Fault-tolerance

Checkpointing

Applications with long times to solution usually will want to
save intermediate execution points.
These points should have all the necessary information to
restore the computation from the last saved point.



Introduction BOINC API

Fault-tolerance

Checkpointing



Introduction BOINC API

Fault-tolerance

Checkpointing



Introduction BOINC API

Fault-tolerance

Checkpointing



Introduction BOINC API

Fault-tolerance

Checkpointing



Introduction BOINC API

Fault-tolerance

Functions

Starting Checkpointing
int boinc time to checkpoint();

This function can be used as many times as needed.

Finishing Checkpointing
void boinc checkpoint completed();



Introduction BOINC API

Critical Sections

Critical code

There are parts of an application that are critical in its
execution.
For this reason, we do not want to stop the execution of
those parts at any moment.
BOINC provides several functions to assure the execution
of any critical section without interruptions.



Introduction BOINC API

Critical Sections

Functions

Starting the critical section
void boinc begin critical section();

Ending the critical section
void boinc end critical section();

Note
This is carried out automatically in the checkpoints.



Introduction BOINC API

Application Progress

Progress Bar

The BOINC’s client shows the percentage of carried out work.
To update that percentage bar, we have to use the following:

Function
boinc fraction done(double fraction done);

The next function obtains the last computed percentage:

Function
double boinc get fraction done();



Introduction BOINC API

Communication with the Client

Gathering information from the Client

The following functions obtain information from the client:

Functions
int boinc get init data p(APP INIT DATA*); int
boinc get init data(APP INIT DATA&);



Introduction BOINC API

Communication with the Client

Obtained data

core version: Client’s version in digits.

app name: Application name.

project preferences: A XML text with the preferences of the user for the project.

user name: User name of the project.

team name: Team name of the user.

project dir: Absolute path of the project folder.

boinc dir: Absolute path of BOINC root’s folder.

wu name: The name of the Work Unit.

authenticator: The authenticator for this project.

slot: Slot number.

user total credit: Total credif of this user for the project.

user expavg credit: Average credit of the user per day.

team total credit: Total credit of the team for this project.

team expavg credit: Average credit of the team per day.

host info: A struct describing the HW and OS of the host.



Introduction BOINC API

Standalone Mode

Checking the application

BOINC allows to run applications without the client.
The next function enables the “standalone”:

Standalone Function
int boinc is standalone(void);



Introduction BOINC API

Asking for network connection

Networking



Introduction BOINC API

Asking for network connection

Because of User Preferences



Introduction BOINC API

Asking for network connection

Warning the user

The next function warns the user asking for allowance to
connect to the network:

Función
void boinc need network();



Introduction BOINC API

Asking for network connection

Checking the network

The next function checks if the application can go on-line:

Función
int boinc network poll();



Introduction BOINC API

Asking for network connection

Finishing the communications

When communications have been finished, we have to call the
following function:

Function
void boinc network done();



Introduction BOINC API

Asking for network connection

Acknowledgments

Icons from the Tango Desktop project and Gnome Desktop (Creative Commons & GPL License)

Copyright (c) 2007 University of California and Daniel Lombraña González. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later

version published by the Free Software Foundation.


	Introduction
	BOINC API
	Standard Applications
	Resolución de nombres de ficheros
	Fault-tolerance
	Critical Sections
	Application Progress
	Communication with the Client
	Standalone Mode
	Asking for network connection


