



# Calibration of the ATLAS Electromagnetic Calorimeter, Measurement of W boson properties and Higgs physics in the Standard Model

#### **Hicham ATMANI**

Shandong University

Chung-Yao Chao Fellowship Interview

June 5, 2021

Hicham ATMANI

Chung-Yao Chao Fellowship

June 5, 2021 1 / 19

## Introduction: Resume



- <u>Hicham ATMANI</u> (26 years old), graduated in December 2020.
- 2012 2017: Bachelor and Master degrees at the University of Cadi Ayyad, Marrakesh, Morocco.
- 2017: M2 internship at the IJCLab laboratory, Orsay, France: Precision measurement of the W boson mass with the ATLAS detector at the LHC.
- 2017-2020: PhD at the IJCLab laboratory, Orsay, France: Calibration of the ATLAS Electromagnetic Calorimeter and Measurement of W Boson Properties.
- 2021-2023: Postdoctoral Researcher at CERN, Shandong University: Measurement of the Higgs boson production cross sections via ggF, using Run 2 data with the ATLAS detector.

## Outline

#### Previous work and achievements:

- Qualification task:
  - Calibration of the electromagnetic calorimeter of the ATLAS detector.
  - Development of a new method to calibrate the ATLAS electromagnetic calorimeter for low pileup runs, used for the electroweak measurements.
- physics analysis: measurement of W boson properties
  - Measurement of the W-boson transverse momentum distribution using low pileup runs data.
  - Measurement of the *W*-boson production cross sections.
  - Measurement of the differential and double differential cross sections using the unfolding technique.

### Work status at SDU:

• Higgs physics: Measurement of the Higgs boson production and differential cross sections via ggF in the  $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ .

## Previous work and achievements: Qualification task

## Motivation

• Electrons and photons are heavily used in precision measurements due to the high precision reachable by the electromagnetic (EM) calorimeter.



To reach a high precision in property measurements, a precise calibration of the energy of electrons and photons is required.

Hicham ATMANI

#### Chung-Yao Chao Fellowship

## Dataset



- Run 1: 2010  $\rightarrow$  2012, (7 and 8 TeV)
- Run 2: 2015  $\rightarrow$  2018, (13 TeV)
- The integrated luminosity:

$$L_{\rm int} = rac{N_{\rm process}}{\sigma_{
m process}}$$
 ,

• total integrated luminosity at Run 2 correspond to 147  $\rm fb^{-1}$  ( $\times$  7 Run 1).



- Recorded luminosity as a function of the number of interactions per crossing.
- Special runs are collected at ( $\mu \approx 2$ ), correspond to 599  ${
  m pb}^{-1}$  at 5 and 13 TeV.
- Low pile-up runs are used for precision measurements.

June 5, 2021 6 / 19

Sac

## Calibration procedure: Overview





#### Step 4: An important difference between data & MC:

• Di-electron invariant mass  $m_{ee}$  at the step 4 of the calibration procedure:

$$m_{ee} = \sqrt{2 \cdot E_1 \cdot E_2 \cdot (1 - cos( heta_{12}))}$$
 (1)

• The difference between data and simulation is corrected in step 5.

#### Step 5: Two correction factors are extracted and applied to data and simulation.;



• The energy scale factor  $\alpha$ :

$$E_i^{\rm corr} = \frac{E_i^{\rm data}}{1+\alpha_i}$$

• Applied to the data in order to match the energy response of the simulation.

• The additional constant term c':

$$\left(\frac{\sigma(E)}{E}\right)_i^{\text{corr}} = \left(\frac{\sigma(E)}{E}\right)_i^{\text{MC}} \oplus c_i'$$

• Applied to the simulation to be in agreement with the energy resolution of the data.

イロト 不得下 イヨト イヨト

#### Both correction factors are extracted using the templates method.

Chung-Yao Chao Fellowship

## Calibration procedure: Results



- The difference observed in the end-cap region is related to the difference of instantaneous luminosity.
- The difference of instantaneous luminosity affects the HV drop and temperature.
- The derived effective constant terms depend on the year i.e on the pileup (lower values for 2017 than 2016).

4 D N 4 A

▶ ∢ ≣

• This effect is explained by an overestimation of the pileup noise in the simulation.

-

## Calibration of low pileup runs: Extrapolation approach (New method)

- Motivation: Calibrate the ATLAS electromagnetic calorimeter for low pileup runs used in the electroweak measurements.
- Analysis Idea: Because of low stats of low pileup runs, an alternative approach is used for the calibration: Extrapolate the results from standard to low pileup runs.
  - **D** The blue circles show the energy scale  $\alpha$  for the high pileup dataset as a function of  $\langle \mu \rangle$ .
  - ② The black lines show the extrapolation to  $\langle\mu
    anglepprox 2$  using a linear function and five intervals of  $\langle\mu
    angle.$
  - The extrapolation results are compared with the energy scale factors extracted from the low pileup dataset, represented by the red point. JINST 14 (2019) P03017



## Previous Work and Achievements: physics analysis

Sac

## <u>Goal:</u> Increase the precision of W boson mass: from 19 MeV (Run 1) to less than 10 MeV (Run 2)

| Combined categories                        | Value   | Stat. | Muon | Elec. | Recoil | Bckg. | QCD  | EW   | PDF  | Total |
|--------------------------------------------|---------|-------|------|-------|--------|-------|------|------|------|-------|
|                                            | MeV     | Unc.  | Unc. | Unc.  | Unc.   | Unc.  | Unc. | Unc. | Unc. | Unc.  |
| $m_{\mathrm{T}}^W$ , $p_{\mathrm{T}}^\ell$ | 80369.5 | 6.8   | 6.6  | 6.4   | 2.9    | 4.5   | 8.3  | 5.5  | 9.2  | 18.5  |

- Measurement of  $p_T^W$ : A precise measurement of  $p_T^W$  reduces the QCD modelling uncertainty in the measurement of  $M_W$  by a factor of two (8.3  $\rightarrow$  4 MeV).
- <u>Measurement of the W boson differential Xs</u>: The rapidity dependence of the W boson production provides constraints on the parton distribution functions (PDFs), also the PDF uncertainty on the  $M_W$  measurement.

## Measurement of $p_T^W$ : First results from Run 2

• Analysis Idea: The measurement of  $p_T^W$  is based on the unfolding procedure. The goal of the unfolding is to correct data detector resolution effects, and compare our distributions with the theoretical predictions.





- The Bayesian method is used for the unfolding.
- All the sources of uncertainties are propagated to the unfolded level.

Distributions at the unfolded level:



- The results for the unfolded  $p_T^W$  distributions compared to the different predictions.
- Paper of  $p_T^W$  measurement is in the review.

Hicham ATMANI

Chung-Yao Chao Fellowship

June 5, 2021 13 / 19

Sac

## W boson differential cross sections

- Motivation: The measurement of differential cross sections in this process provides stringent tests of the QCD theory, also provides constraints on the parton distribution functions (PDFs).
- Methodology: The measurement of the differential cross sections is based on the unfolded distributions of our observable of interest (η<sub>ℓ</sub>, p<sub>ℓ</sub><sup>T</sup>).

$$\frac{d\sigma_i}{dx^i} = \frac{N'_{\rm Unf}}{\Delta x^i \mathcal{L}} \cdot \frac{1}{A_c} = \frac{1}{\Delta x^i \mathcal{L}} \cdot \Sigma_j M_{ij}^{-1} \left( N_{\rm reco}^j - N_{\rm reco,bkg}^j \right) \cdot \frac{1}{A_c}, \tag{2}$$



Results are compared with theoretical predictions using DYTURBO.

Hicham ATMANI

Chung-Yao Chao Fellowship

#### Previous work and achievements:

- Qualification task:
  - I worked on the extraction of two scale factors  $(\alpha, c')$  used for the calibration of ATLAS electromagnetic calorimeter.
  - **②** The results presented today are used by the ATLAS collaboration for Run 2 analyses.
  - **③** This work is published in JINST 14 (2019) P12006 and JINST 14 (2019) P03017.
- Analyses work:
  - I worked on the measurement of W boson properties: Measurement of  $p_T^W$ , Fiducial and differential cross sections.
  - **2** The paper for the measurement of  $p_T^W$  will be published before the end of 2021, together with the measurement of W boson fiducial cross sections (in collaboration review).
  - <sup>(3)</sup> We will have another paper covering the differential cross sections of W and Z bosons.

## Work status at SDU:

Hicham ATMANI

Э 16 / 19 June 5, 2021

590

イロト (雪下 (目下))

## Work status at SDU

- After 4 years in electroweak precision measurements, I started working on the Higgs physics.
- I joined the effort for the measurement of differential and fiducial cross sections of Higgs boson, via ggF in the H→ WW<sup>\*</sup> → ℓvℓv, with the Run 2 datasets.
  - <u>Goal</u>: Measure the fiducial cross sections, Inclusive as well as Differential, Associated with 2 Jets.
  - <u>HWW</u>: the dominant Higgs boson production mechanism, Large branching ratio, Clean signal in leptonic decay mode.
  - Strategy: Based on ggF couplings analysis (the object & event selections for signal region and control regions are same as in the couplings analysis).
  - Target: We are working hard to get a first version of the paper by the end of this year.



## Backup

Hicham ATMANI

Э June 5, 2021 18 / 19

590

イロト 不得 トイヨト イヨト

## W boson production cross sections:

• Analysis Idea: The measurement of W boson production cross sections is based on the unfolded distributions of  $p_T^W$ :





- Theoretical predictions are calculated for the fiducial cross-sections  $\sigma_{fid}$  using DYTURBO at NNLO QCD, with different PDF sets.
- W boson production cross sections using Run 2 ATLAS datasets, will be published with the  $p_{\pm}^{W}$  paper.

Hicham ATMANI