

赵忠尧博士后面试答辩

答 辩 人: 廖龙洲 博后导师: 刘智青教授 博士导师: 苑长征研究员

2021年6月5日

◆ 个人简历

● 2011-2015: 学士

郑州大学

● 2015-2020:博士

中国科学院大学、高能物理研究所 导师:苑长征研究员

● 2020-至今: 博士后

山东大学

导师: 刘智青教授

◆ 既往工作情况及成果

● 探测器

- ➢ BESⅢ漂移室新内室张力漏电流及正比计数器测试
- ➢ MUC的检查
- 物理分析
 - ➤ XYZ数据质心能量测量
 - ➢ BESIII上 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ 截面的测量
 - ▶ BESIII上 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ 中间态 ($Z_c(3900)^{\pm}$) 的研究

◆ BESIII漂移室新内室张力、漏电流及正比计数器测试

漂移室从2008年运行至今,将面临严重的老化问题。 因此,建造一个新内室可以作为备用方案。

在这个工作中我主要负责:

- ▶ 信号丝、场丝的张力、漏电流的测量工作
- ▶ 用于前端气体检测的正比计数器的测试工作

MUC时间窗太窄, MUC将丢失部分事例:

- ▶ 不同过程,MUC丢失信息的比例不同
- ▶ 丢失的信号,不改变原有数据的角分布
- ▶ 调整时间窗后,MUC丢失的比例显著减小

	$\pi^+\pi^- J/\psi$	di-muon
4210	4.65+/-0.37	2.901 +/- 0.014
4220	4.07+/-0.28	3.775 +/- 0.016
4230	3.39+/-0.14	2.049 +/- 0.009
4237	3.34+/-0.18	2.063 +/- 0.012
4246	5.07+/-0.20	2.089 +/- 0.012
4680	1.69+/-0.69	0.310 +/- 0.005

◆ XYZ数据质心能量测量

BESIII在2017年和2019年取了两批XYZ数据, 共16个能量点。精确的质心能量测量结果,对于 BESIII上的物理分析十分重要。

▶ 质心能量: $E_{cm} = M_p(\mu^+\mu^-) + \Delta M_{ISR/FSR} + \Delta M_{cal}$

刻度导致的偏差:

- ▶ J/ψ不变质量和PDG值的差值
- ▶ 不同批次数据的偏差不同
- ▶ 偏差和Ecm存在线型关系

 $\Delta M_{cal} = -\left(k \times \left(E_{cm} - m_{J/\psi}\right) + \Delta M^{cor}(J/\psi)\right)(MeV)$

◆ XYZ数据质心能量测量

研究结果:

- ➤ 不同BOSS版本下,给出一致的结果;
- ➤ 按run的数据质量检查;
- ▶ 系统误差小于0.5 MeV。

▶ 首次发现刻度偏差和质心能量的关系;

7

♦ BESIII上 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ 截面的测量

通过 e^+e^- → $\pi^+\pi^-J/\psi$ 过程我们观测到了 丰富的XYZ态,因此,精确测量该过程 的截面分布,能为我们认识XYZ粒子提 供重要信息。

8

♦ BESIII上 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ 截面的测量

基于BESIII以前的工作,我们提升的方向:

- □ 统计误差: □ 系统误差:
- ✓ 事例挑选 ✓ MC模拟
- ✓ 本底分析 ✓ 径迹效率
- 径迹效率修正:
- e^{\pm} : Bhabha
- μ^{\pm} : di-muon
- $\pi^{\pm}: 2(\pi^{+}\pi^{-})$

◆ BESIII上 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ 截面的测量

对截面的描述:

- ▶ 3个相干的Breit-Wigner函数
- ▶ 指数函数(Exp)和2个相干的BW函数

100	Parameters	Solution I	Solution II
90 BW3770 BW1	$\Gamma_{ee}\mathcal{B}(R_{3773})$	0.53 ± 0.05	0.28 ± 0.05
	$M(R_0)$	3903.70 ± 28.73	-
	$\Gamma_{tot}(R_0)$	409.90 ± 43.47	-
	$\Gamma_{ee}\mathcal{B}(R_0)$	6.48 ± 0.49	-
50	$M(R_1)$	4221.13 ± 1.33	4220.08 ± 1.19
	$\Gamma_{tot}(R_1)$	42.73 ± 2.62	43.44 ± 2.35
	$\Gamma_{ee}\mathcal{B}(R_1)$	1.71 ± 0.19	8.50 ± 0.46
	$M(R_2)$	4302.63 ± 9.44	4314.06 ± 8.91
	$\Gamma_{tot}(R_2)$	124.21 ± 14.85	126.90 ± 16.73
	$\Gamma_{ee}\mathcal{B}(R_2)$	1.15 ± 0.24	1.32 ± 0.29
	p0	-	4.01 ± 0.21
	p1	-	33.74 ± 5.96
× ••••••	ϕ_1	77.01 ± 14.63	92.34 ± 15.97
3.8 4 4.2 4.4 4.6	ϕ_2	-9.59 ± 4.66	-81.05 ± 5.21
√s (GeV)	χ^2/ndf	50.94/27	55.62/28

该工作的创新点:

- ▶ 分波分析给出效率
- ▶ 机器学习 (BDT)
- ▶ 辐射修正因子的迭代
- ▶ 径迹效率修正
- 系统误差处理:对MC模型、径迹效率、辐射 修正、BDT等均根据误差矩阵抽样给出。

	Thiswork	Previous	
事例挑选	4680效率提高20%		
本底水平	降低75%		
MC模拟	1.90%	3.1%	
径迹效率	0.81%/0.63%	4%	

◆ BESIII上 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ 中间态 ($Z_c(3900)^\pm$) 的研究

- □ 对Z_c(3900)[±]的研究:
- 四夸克态的候选者
- 产生截面随E_{cm}的变化:
 Y和Z的关系
- 详细的分波结果,对于区分
 不同的理论模型十分重要

- □ 分波分析:
- I/O 检查

Zc(X)

٠

- 多个数据样本同时拟合
- 中间态显著性检查
- π⁺π⁻共振态的参数化方式

Phys.Rev.Lett. 110 (2013) 252001

◆ BESIII上 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ 中间态 ($Z_c(3900)^\pm$) 的研究

Sample	Ratio%	sample	Ratio%	sample	Ratio%
4160	11.18	4246	2.14	4380	8.01
4180	8.30	4260	2.35	4400	7.65
4190	6.58	4270	3.01	4420	9.04
4200	5.21	4280	3.44	4440	9.78
4210	3.09	4290	3.22	4640	16.79
4220	2.36	4315	3.69	4660	16.87
4230	1.70	4340	4.99	4680	19.30
4237	2.05	4360	4.80	4700	18.87

□ 同时拟合的样本分组及 *Z_c*(3900)[±]的质量和宽度

S1	S2	S3	S4	S5	S6
4160	4210	4246	4290	4380	4640
4180	4220	4260	4315	4400	4660
4190	4230	4270	4340	4420	4680
4200	4237	4280	4360	4440	4700

Mass	Width
3883.47 ± 1.62	38.24 ± 3.58
3883.98 ± 1.00	37.83 ± 1.56
3884.85 ± 1.77	34.17 ± 3.28
3890.03 ± 2.27	36.06 ± 4.23
3885.06 ± 0.76	36.86 ± 1.37
3943.24 ± 6.51	124.54 ± 11.09
3979.07 ± 11.30	156.38 ± 21.84
	Mass 3883.47 ± 1.62 3883.98 ± 1.00 3884.85 ± 1.77 3890.03 ± 2.27 3885.06 ± 0.76 3943.24 ± 6.51 3979.07 ± 11.30

12

□ 初步的拟合结果

◆ 未来计划

- 继续 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ 的分波分析工作
 - ➤ Zc(3900)[±]的截面测量结果
 - ▶ f₀(980)的截面测量结果
 - \rightarrow 可能存在的新的 Z_c 态
- BESIII上对X(3872)的一些研究
- 已加入Belle II合作组,在底夸克偶素能区研究多夸克等奇异态。

I BIER

