

Chung-Yao Chao Fellowship Interview 2021

- Speaker: Muzaffar Irshad
- Advisor: Prof. Guangshun Huang
- Co-Advisor: Assoc. Prof. Xiaorong Zhou

University of Science and Technology of China

June 5, 2021

Image: A mathematical states and a mathem

Outline

- Self-Introduction
- Publication and Achievements
- Research Experience
 - Physics Motivation
 - Study of P-wave $\chi_{cJ}(J=0,1,2)$ decays
 - Study of $e^+e^- \rightarrow \Sigma^0 \overline{\Sigma}^0$, using Rscan data
 - Summary and Outlooks
- Future Work Plan
 - Physics Motivation
 - Phase between the Strong and Electromagnetic Amplitudes of $J/\psi(\psi(2S)) \rightarrow \Sigma \bar{\Sigma}$ Decays, using $J/\psi(\psi(2S))$ scan data
 - Preliminary Results
 - **Future Prospects**

・ロト ・同ト ・ヨト ・ヨ

Work Experience:

- June 2020 Present: Postdoctoral researcher at USTC, China
- June 2013 2014: Visiting Lecturer at Punjab University, Pakistan
- June 2014 2016: Teacher Trainer at KIPS College, Pakistan

Education:

- June 2016 2020: (CAS-TWAS fellowship)
 - Ph.D student in Nuclear and Particle Physics at USTC, China
- June 2011 2013: (CGPA 4.0/4.0)
 - Masters's Degree in High Energy Particle Physics at Punjab University, Pakistan
- June 2006 2010: (Gold Medal)
 - **Bachelor's Degree** in High Energy Particle Physics at Punjab University, Pakistan

Research Areas:

- BESIII Collaboration since 2017, I have joined USTC working on:
 - Charmonium Physics \rightarrow Radiative transition of $\psi(2S)$
 - τ -QCD \rightarrow Form factor and Relative Phase measurements
- Regularly presented work at BESIII Collaboration meeting and Workshops

Today I will focus on the recent results achieved at USTC and future plans

Publication

 First measurements of χ_{cJ} → Σ⁻Σ⁺(J = 0, 1, 2) decays → M. Ablikim *et al.* (BESIII Collaboration), Phys. Rev. D **101**, 092002 (2020) link

Work Under Review

• Measurement of the $e^+e^- \rightarrow \Sigma^0 \bar{\Sigma}^0$ cross section from production threshold to 3.02 GeV at BESIII link. (BAM-00441 at Collaboration Wide Review stage)

Internal Referee

• Study of Ξ^- Baryon Polarization in $\psi(3686) \to \Xi^- \overline{\Xi}^+$ decay at BESIII (BAM-00487) link.

Achievements

- Participate in Hadron Physics Summer School in winter, presented a talk on "Improve the detector simulation techniques in Hadron Spectroscopy", JUFA Julich, Germany, September, 2018.
- CAS-TWAS President's Fellowship awarded for Ph.D study.
- University Gold Medal for obtaining first position in Bachelors in HEP.

イロト 不得下 イヨト イヨト

Previous Work-I

Measurement of BFs of $\chi_{cJ} \to \Sigma^- \bar{\Sigma}^+$ (J=0,1,2) decays

Irshad Muzaffar (USTC)

Chung-Yao Chao Fellowship

イロト イロト イヨト

Models that can predicts the decay rates of $\chi_{cJ} \rightarrow B\bar{B}$:

• Color Octet Mechanism (COM)

- The next higher Fock state in the p-wave charmonium so-called **color octet**
- This higher state is made up of the $c\bar{c}$ plus a gluon

• Helicity Selection Rule (HSR)

• When charmonium meson $J_{c\bar{c}}$ decaying into two light mesons h_1 and h_2 , the perturbative method gives the asymptotic behavior of the branching ratio as follows: $(12) = \frac{|\lambda_1 + \lambda_2| + 2}{|\lambda_1 + \lambda_2| + 2}$

$$\operatorname{BR}\left[J_{c\bar{c}}(\lambda) \to h_1\left(\lambda_1\right)h_2\left(\lambda_2\right)\right] \sim \left(\frac{\Lambda_{\text{QCD}}^2}{m_c^2}\right)^{|\lambda_1+\lambda_2|+2}$$

If $\lambda_1 + \lambda_2 \neq 0$, which will violate the HSR and it is supposed to be suppressed

• Quark Creation Model (QCM)

- The limits of the helicity conservation rule can be removed, so that some forbidden decay processes, *i.e.* $\chi_{c0} \rightarrow B\bar{B}$ can be investigated.
- This model strengthened decay channels $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda}$ (J=0,2) are understood, by including only the color singlet contribution.
- Large BFs of $\psi(2S) \to \gamma \chi_{cJ}$ make e^+e^- collisions at the $\psi(2S)$ resonance a very clean environment for χ_{cJ} investigation.

イロト イヨト イヨト イヨト

Theoretical and Phenomenological Results

BFs comparison for various $\chi_{cJ} \rightarrow B\bar{B}$ in units of 10^{-5}

Mode		χ_{c0}	χ_{c1}	χ_{c2}
	BES	$27.1^{+4.3}_{-3.9} \pm 4.7$	$5.7^{+1.7}_{-1.5} \pm 0.9$	$6.5^{+2.4}_{-2.1} \pm 1.0$
$p\bar{p}$	PDG	22.1 ± 0.08	7.60 ± 0.34	7.33 ± 0.33
	Theory		6.4	7.7
	BESIII	$33.3 \pm 2.0 \pm 2.6$	$12.2 \pm 1.1 \pm 1.1$	$20.8 \pm 1.6 \pm 2.3$
$\Lambda \overline{\Lambda}$	PDG	33.0 ± 4.0	11.8 ± 1.9	18.6 ± 2.7
	Theory	$(93.5 \pm 20.5^a, 22.1 \pm 6.1^b)$ (QCM)		$(15.2 \pm 1.7^{a}, 4.3 \pm 0.6^{b})$
		11.9 - 15.1 (COM)	3.9	3.5
	BESIII	$47.7 \pm 1.8 \pm 3.5$	$4.3\pm0.5\pm0.3$	$3.9\pm0.5\pm0.3$
$\Sigma^0 \bar{\Sigma}^0$	PDG	44.0 ± 4	< 4.0	< 6.0
	Theory	$ig(25.1 \pm 3.4^{ m a}, 18.7 \pm 4.5^{ m b} ig)$		$(38.9 \pm 8.8^{a}, 4.2 \pm 0.5^{b})$
			3.3	5.0
	BESIII	$50.4 \pm 2.5 \pm 2.7$	$3.7\pm0.6\pm0.2$	$3.5\pm0.7\pm0.3$
$\Sigma^+ \overline{\Sigma}^-$	PDG	39.0 ± 7.0	< 6.0	< 7.0
	Theory	5.6 - 6.9 (COM)	3.3	5.0
	BESIII	$53.0 \pm 2.7 \pm 0.9$	< 3.4	< 3.7
	PDG	48.0 ± 7.0	8.0 ± 2.1	< 10.0
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	4.8 ± 2.1		
			2.4	3.4
	BESIII	$46.7 \pm 1.9 \pm 2.3$	$7.5\pm1.1\pm0.5$	$18.3 \pm 1.5 \pm 1.4$
±0.00	PDG	31.0 ± 8.0	< 6.0	< 10.0
	Theory	$23.0 \pm 7.0 \; (\mathbf{QCM})$		4.8 ± 2.1
			2.4	3.4

• Experimentally, there are no BFs results of $\chi_{cJ} \to \Sigma^{-} \bar{\Sigma}^{+}$, necessary to further test the validity of COM, HSR, QCM and prediction of isospin symmetry.

Irshad Muzaffar (USTC)

æ

7/26

イロト イヨト イヨト イヨト

Summary of $\mathcal{B}(\chi_{cI} \to \Sigma^- \bar{\Sigma}^+)$

Fit Results: The fitted signal yields of $\psi(3686) \rightarrow \gamma \chi_{cJ}$ as a function of $M(n\pi^-)$.

BF measurements of $\chi_J \to \Sigma^- \bar{\Sigma}^+$:

- First measurement ever, due to difficult reconstruction of $n\bar{n}\pi^+\pi^-$.
- Prove the isospin symmetry in strong interaction comparing to $\chi_{cJ} \to \Sigma^+ \bar{\Sigma}^-$.
- BF of $\chi_{c0} \to \Sigma^- \bar{\Sigma}^+$ do not vanish, which demonstrates a strong violation of the HSR.
- Both COM and QCM fails to describe our measured result.

Channel	This work	$S(\sigma)$	BESIII	Theoreti	cal predictions	_
	$\chi_{cJ} \to \Sigma^- \bar{\Sigma}^+$		$\chi_{cJ} \to \Sigma^+ \bar{\Sigma}^-$	COM	QCM	
$\chi_{c0} \to \Sigma^- \bar{\Sigma}^+$	$51.3 \pm 2.4 \pm 4.1$	30σ	$50.4 \pm 2.5 \pm 2.7$	5.9 - 6.9	18.1 ± 3.9	_
$\chi_{c1} \to \Sigma^- \bar{\Sigma}^+$	$5.7\pm1.4\pm0.6$	5.8σ	$3.7\pm0.6\pm0$.2	3.3		
$\chi_{c2} \to \Sigma^- \bar{\Sigma}^+$	$4.4\pm1.7\pm0.5$	3.6σ	$3.5\pm0.7\pm0$.3	5.0	4.3 ± 0.4	_
				<pre>< D > < D </pre>	· · · 문 · · · 문 · · · 문	-
Irshad Muzaffar	(USTC)	Chung-Y	ao Chao Fellowship		June 5, 2021	

8 / 26

Results of the BFs (in units of 10^{-5}) for the measurement of $\chi_{cJ} \to \Sigma^- \bar{\Sigma}^+$

Work Under Review-II

Study of $\Sigma^0 \bar{\Sigma}^0$ from $\sqrt{s} = 2.3864$ to 3.0200 GeV using R-scan data

Irshad Muzaffar (USTC)

Chung-Yao Chao Fellowship

Space- and Timelike EMFFs

- EMFFs are accessed in kinematical regions of (transferred squared four-momentum) q^2 through study of space- and timelike processes.
- Hyperons are difficult to study in the SL region but TL form factors offers the best opportunity to study of Hyperons.
- Time-like baryons EMFFs is accessible in e^+e^- collision.
- Our aim to probe the cross section near threshold of hyperon pairs experimentally.

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Spin 1/2 Baryons:

- Two independent EMFFs: $G_E(s), G_M(s)$ ($s = q^2$, four momentum transfer).
- In one-photon exchange: $(\tau = \frac{q^2}{4m_B^2}, \beta = \sqrt{1 \frac{4m_B^2}{q^2}}, \text{ Coulomb factor C})$
 - Total cross section: $\sigma_{B\bar{B}}(s) \equiv \frac{4\pi \alpha^2 \beta C}{3s} [|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2]$
 - Effective FFs: $|G_{\text{eff}}(s)| = \sqrt{\frac{\sigma(s)}{\frac{4\pi\alpha^2\beta C}{3s}}[1+\frac{1}{2\tau}]}$
- Observed Threshold Enhancement: For example $p\bar{p}$, $\Lambda\bar{\Lambda}$, $\Lambda_c\bar{\Lambda}_c$, ...
- Hyperons FFs are hardly explored. The precision of hyperons FFs are quite poor and better results to be demanded in future. [https://docbes3.ihep.ac.cn/DocDB/0007/000742/004/sigsig.pdf]

Summary of $e^+e^- \rightarrow \Sigma^0 \bar{\Sigma}^0$

Outlooks:

- Cross section lineshape for $e^+e^- \rightarrow \Sigma^0 \bar{\Sigma}^0$ is well fitted by **pQCD-motivated function**.
- Improved precision compared to BaBar's measurements over 50% above $\sqrt{s} \ge 2.5000$ GeV.
- Novel method has applied at production threshold, no significant signal is observed at 2.3864 GeV.
- An asymmetry of isospin triplet is observed, and consistent with their incoherent sum of squared of charges of valence quraks.
- Cross section between Λ and Σ^0 is shown to provide the **proof for diquark-correlation**.
- For complete determination of FFs more data sets will be needed in future at BESIII.

• Our results provide a valuable experimental inputs to understand the hyperons-antihyperons production in both strong and EM interactions.

イロト 不得下 イヨト イヨト

Proposed Work joint effort of USTC and Ferra group Itlay

Phase between the Strong and Electromagnetic Amplitudes of $J/\psi(\psi(2S)) \rightarrow \Sigma \bar{\Sigma}$ Decays, using $J/\psi(\psi(2S))$ scan data

Irshad Muzaffar (USTC)

Chung-Yao Chao Fellowship

Physics-Motivation

J/ψ Strong and EM Decay Amplitudes:

Resonant contributions:

- pQCD: all amplitudes almost real^[1,2]
- QCD \rightarrow small phases for eseen $\Phi_{3g,\gamma} \sim 10^{\circ}$
- Experimental observation \rightarrow Large Phase for eseen

Non-resonant continuum: In pQCD regime

- $A_{\gamma} \epsilon \mathcal{R}$
- If both real, continuum and resonant amplitudes must interfere
- Phase b/w $A_{3g}, A_{\gamma} \rightarrow (\Phi_{3g,\gamma} \sim 0^{\circ}/180^{\circ})$

 \rightarrow No theory can give the satisfactory explanation of the origin of $\Phi_{3g,\gamma} \rightarrow$ better knowledge of it may lead profound understanding of charmonia decays.

- [1] Phys. Rev. Lett. 59, 621 (1987)
- [2] Nucl. Phys. B **246**, 52 (1984)

イロト イポト イヨト イヨト

$J/\psi/\psi(2S)$ strong and electromagnetic decay amplitudes

Theoretical predication:

- Model depended approach using SU(3) flavor symmetry suggested:
 - $\Phi_{3a,\gamma} \sim 90^\circ \rightarrow \mathbf{No}$ interference

Experimental results:

- Indirect results based on SU(3)
 - $J/\psi \to N\bar{N} (1/2^+ 1/2^-)$ $\Phi_{3q,\gamma} = (88.7 \pm 8.1)^{\circ [1]}$
 - $\Phi_{3q,\gamma} = (106 \pm 10)^{\circ [2]}$ $J/\psi \to VP(1^-0^-)$
 - $\Phi_{3g,\gamma} = (89.6 \pm 9.9)^{\circ [3]}$ $J/\psi \to PP (0^- 0^-)$
 - $\Phi_{3g,\gamma} = (138 \pm 37)^{\circ [3]}$ $J/\psi \to VV (1^-1^-)$
 - $\psi(2S) \to PP(0^-0^-)$ $\Phi_{3a,\gamma} = (95 \pm 15)^{\circ[4]}$
 - $\psi(2S) \to N\bar{N} (1/2^+ 1/2^-)$ $\Phi_{3q,\gamma} = (-98 \pm 25)^\circ \text{ or } (134 \pm 25)^\circ$
 - $\Psi(2S) \to \mathrm{VP}\left(1^{\pm}0^{-}\right)$ $\Phi_{3q,\gamma} \sim 0^{\circ}$ No evidence for large phase
- Direct results through lineshape scan

 $J/\psi \to 5\pi$ $\Phi_{3q,\gamma} = (84 \pm 3.6)^{\circ} \text{ or } (-84.9 \pm 3.6)^{\circ}$

- All analyses revealed that a relative orthogonal phase exist $b/w A_{3q}$ and A_{γ}
- [1]Phys. Rev. D 86, 032014 (2012) [2] Phys. Rev. D 41, 01389 (1990)
- [3] Phys. Rev. D 60, 051501 (1999)

[4]Phys. Rev. D 74, 011105 (2006) 4 D N 4 A N 4 F N

Irshad Muzaffar (USTC)

Why this measurement is important?

- Jump has been observed while studied $e^+e^- \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ at 3.08 GeV at BESIII.
- $J/\psi \to \Sigma^{\circ} \bar{\Sigma}^{\circ}$ decays the phase may not be compatible with 90°.
- Scan below and at $J/\psi(\psi(2S))$ resonance data provides unique opportunity for the first ever phase measurement of hyperon-antihyperon $(\Sigma^{\circ}\bar{\Sigma}^{\circ})$ at BESIII.
- It should be a bed-test for perturbative QCD (pQCD) model predictions, SU(3) symmetry and SU(3) symmetry breaking hypotheses.
- With a model independent fit to study the interference pattern

BAM-00441 100 90 80 70 (dd) 7 60 σ (pb) 50 40 30 20 10 2.4 2.5 2.6 2.7 2.8 2.9 3.0 √s (GeV)

Irshad Muzaffar (USTC)

16/26

Phase Measurement

Prelimanry Results

Irshad Muzaffar (USTC)

Chung-Yao Chao Fellowship

June 5, 2021 17/26

Image: A matrix

Preliminary Results by J/ψ lineshape

1. Fitting Result for $J/\psi \rightarrow \Sigma^{\circ} \overline{\Sigma}^{\circ}$

Preliminary value of phase: $\Phi_{3g,\gamma} \approx \pm (157.0 \pm 49.3)^{\circ} \rightarrow \text{Ref.link1}$

2. Fitting Result for $J/\psi \to \Sigma^+ \bar{\Sigma}^-$

Preliminary value of phase: $\Phi_{3g,\gamma} \approx \pm (114.5 \pm 12.7)^{\circ} \rightarrow \text{Ref.link2}$

Irshad Muzaffar (USTC)

Chung-Yao Chao Fellowship

- Preliminary results reveal that $\Phi_{3g,\gamma}$ amplitudes of $J/\psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ decay is not compatible with $\sim 90^{\circ}$.
- Current result is inconsistent with prediction based on SU(3) octet baryons and favor to the pQCD.
- First measurement ever, since we always treated the phase for SU(3) octet baryons to be same as ~ 90°.
- Large relative phase value brings a new challenge for theoretician to deeply understand the quarkonium dynamic.

• Since phase 90° is virtually impossible in $\psi(2S)$ decays as predicted. So, it is matter of great concern the large phase is consistent with the $\psi(2S)$ data.

Image: A marked and A marked

- Exciting 4-years of PhD at USTC and China.
- I have joined BESIII Collaboration since 2017 and published one article in Physical Review D and completed one Memo-BAM-00441.
- Starting from June 2020 till now, I am postdoctoral researcher at USTC.
- On-going analysis BAM-00441 is in CWR stage at BESIII and intended general to be Physics Letters B.
- At present, I am assigning internal referee of BAM-00487 at BESIII.
- Responsible for phase project at USTC and already achieved preliminary results for two process $J/\psi \to \Sigma^{\circ} \bar{\Sigma}^{\circ}$ and $J/\psi \to \Sigma^{+} \bar{\Sigma}^{-}$.

Future plan

- Active participation in Physics measurements using BESIII data and focus on phase study through $J/\psi(\psi(2S))$ lineshape scan (direct approach).
- Our plan to present the phase measurement $J/\psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ in upcoming BESIII Workshop held in Lanzhou University.
- Use my expertise in hyperon reconstruction to explore new aspects by studying $\psi(2S) \rightarrow \Sigma^0 \overline{\Sigma}^0$ lineshape.

Thanks for your attention!

Irshad Muzaffar (USTC)

・ロト ・四ト ・ヨト ・ヨト

Back up

Irshad Muzaffar (USTC)

Chung-Yao Chao Fellowship

June 5, 2021

A D > A B > A

21 / 26

2

J/ψ Phase Scan – Real Data

Ecm (GeV)	RunID	BEMS $ECM(GeV)$	$L_{int}(nb^{-1})$
3.0500	28312 - 28346	3.050206 ± 0.000026	14919 ± 161
3.0600	28347 - 28381	3.059257 ± 0.000028	15060 ± 161
3.0830	28382 - 28387, 28466 - 28469	3.083060 ± 0.000023	4769 ± 55
3.0900	28388 - 28416, 28472 - 28475	3.089418 ± 0.000022	15558 ± 165
3.0930	28417 - 28453, 28476 - 28478	3.092324 ± 0.000025	14910 ± 160
3.0943	28479 - 28482	3.095261 ± 0.000084	2143 ± 25
3.0952	28487 - 28489	3.095994 ± 0.000081	1816 ± 21
3.0958	28490 - 28492	3.096390 ± 0.000075	2135 ± 25
3.0969	28493 - 28495	3.097777 ± 0.000076	2069 ± 26
3.0982	28496 - 28498	3.098904 ± 0.000075	2203 ± 25
3.0990	28499 - 28501	3.099606 ± 0.000093	756 ± 11
3.1015	28504 - 28505	3.101923 ± 0.000106	1612 ± 21
3.1055	28506 - 28509	3.106144 ± 0.000090	2106 ± 25
3.1120	28510 - 28511	3.112615 ± 0.000093	1720 ± 21
3.1200	28512 - 28513	3.120442 ± 0.000115	1264 ± 16

B.X. Zhang, Luminosity measurement for J/psi phase and lineshape study

• Analysis Environment: Under the BOSS 6.6.4.p01

イロト イヨト イヨト イヨト

$\psi(2S)$ Phase Scan – Real Data

Ecm (GeV)	RunID	Number of Run	Data taken time	$\mathcal{L} \; (pb^{-1})$
3.5815	55375 - 55461	83	180505 - 180508	84.604 ± 0.082
3.6702	55462 - 55541	80	180508 - 180512	83.582 ± 0.084
3.6081	55542 - 55635	91	180512 - 180515	83.060 ± 0.083
3.6828	55636 - 55662	26	180516 - 180516	28.175 ± 0.049
3.6842	55663 - 55690	28	180517 - 180518	27.840 ± 0.048
3.6853	55691 - 55716	25	180519 - 180519	25.342 ± 0.046
3.6865	55717 - 55737	20	180519 - 180520	24.481 ± 0.045
3.6914	55738 - 55795	57	180520 - 180523	68.647 ± 0.076
3.7098	55796 - 55859	60	180523 - 180525	69.326 ± 0.077

B.X. Zhang, Luminosity measurement for $\psi(2S)$ phase and lineshape study

• Analysis Environment: Under the BOSS 7.0.4

イロト イボト イヨト イヨ

To Fit the Lineshape:

• The cross section of
$$e^+e^- \to \Sigma^{\circ}\bar{\Sigma}^{\circ}$$
 is expressed as:

$$\sigma(W) = \left| D \frac{Se^{i\phi} + E}{M_{J/\psi} - W - i\Gamma_{J/\psi}/2} - C \right|^2$$

• $\boldsymbol{B}_{J/\psi \to \Sigma^0 \bar{\Sigma}^0} = constant imes \left| \boldsymbol{S} e^{i\phi} + \boldsymbol{E} \right|^2$

• where constant = $1/0.3894 \times 10^9$ (pb-to- GeV⁻² conversion factor)

•
$$J/\psi \to e^+e^-$$
 Amplitude: $D = \frac{\Gamma_{J/\psi}/2}{M_{J/\psi}} \sqrt{12\pi B_{J/\psi \to e^+e^-}}$

For Continuum Amplitude:

•
$$\sigma_{\text{cont}}(W) = \sigma_o \left(\frac{W_o}{W}\right)^{\text{pQCD}} = C^2$$

• $C = \sqrt{\sigma_o(3\text{GeV})} \left(\frac{3\text{GeV}}{W}\right)^{\frac{P\text{QCD}}{2} = 5}$

Electromagnetic Amplitude: EM contribution to the Feynman diagram, we look at ratio b/w B_{out} of the final state and $B_{\mu\mu}$. EM amplitude simplified as:

•
$$E = \sqrt{\frac{C^2}{\sigma_{e^+e^- \to \mu^+\mu^-}}} B_{J/\psi \to \mu^+\mu^-}$$

• • • • • • • • • • • •

Fitting Procedure

To Fit the Lineshape: To incorporating the the effect of radiative function F(x, W)and Energy Spread S_E in the fit, the dressed Born cross section is modified as;

• **Step1.** Incorporating the radiative correction F(x, W):

$$\sigma'(W) = \int_0^{1 - \left(\frac{W_{\min}}{W}\right)^2} dx F(x, W) \sigma(W\sqrt{1 - x})$$

• Step2. Energy spread S_E is included by convolving with Gaussian function by set the width of S_E . The Born cross section becomes:

$$\sigma''(W) = \int_{W-nS_E}^{W+nS_E} \frac{1}{\sqrt{2\pi}S_E} \exp\left(\frac{-(W-W')^2}{2S_E^2}\right) \sigma'(W') \, dW$$

Minimization Function: The fitting parameters are obtained by means of χ^2 -minimization as:

$$\chi^{2}_{\min} = \sum_{i=1}^{15} \frac{\left(\sigma^{\text{obs}}_{i} - \sigma^{\prime\prime}\left(W_{i}\right)\right)^{2}}{\left(\Delta\sigma^{\text{obs}}_{i}\right)^{2} + \left[\left(\sigma^{\prime\prime}\left(W_{i} + \frac{\Delta W_{i}}{2}\right) - \sigma^{\prime\prime}\left(W_{i} - \frac{\Delta W_{i}}{2}\right)\right)\right]^{2}},$$

where error along X-axis, is projected along the Y-axis.

イロト イボト イヨト イヨト

Branching Fractions:

• Since the parameters are high correlated therefore, the error in the $BF(J/\psi \to \Sigma^0 \bar{\Sigma}^0)$ is obtained after parametrized the value of each parameter.

This Work

- In PDG: BF = For +ve phase: BF For -ve phase: BF $(1.172 \pm 0.031) \times 10^{-3}$ = $(1.428 \pm 0.035) \times 10^{-3}$ = $(1.442 \pm 0.032) \times 10^{-3}$
- Floating all parameters in a fit such as; Strong, Continuum, $\Phi_{3g,\gamma}$ and S_E .

Solution	$\Delta \Phi_{3g,\gamma}(^{\circ})$	SE (MeV)	$\mathbf{BF}(J/\psi \to \Sigma^0 \bar{\Sigma}^0)$	χ^2/ndf
Sol-I	157.0 ± 49.3	0.915 ± 0.0004	$(1.428 \pm 0.035) \times 10^{-03}$	9.36/11.0
Sol-II	-156.7 ± 47.4	0.915 ± 0.0004	$(1.442 \pm 0.032) \times 10^{-03}$	9.36/11.0

Fitting results on J/ψ lineshape from $\Sigma^0 \bar{\Sigma}^0$ with statistical error only.

26/26