BESIII

Chung-Yao Chao Fellowship Interview 2021

Speaker: Muzaffar Irshad
Advisor: Prof. Guangshun Huang
Co-Advisor: Assoc. Prof. Xiaorong Zhou

University of Science and Technology of China

June 5, 2021

Outline

- Self-Introduction
- Publication and Achievements
- Research Experience
- Physics Motivation

■ Study of P-wave $\chi_{c J}(J=0,1,2)$ decays
■ Study of $e^{+} e^{-} \rightarrow \Sigma^{0} \bar{\Sigma}^{0}$, using Rscan data
■ Summary and Outlooks

- Future Work Plan
- Physics Motivation
- Phase between the Strong and Electromagnetic Amplitudes of $J / \psi(\psi(2 S)) \rightarrow \Sigma \bar{\Sigma}$ Decays, using $J / \psi(\psi(2 S))$ scan data
- Preliminary Results
- Future Prospects

Resume-

Work Experience:

- June 2020 - Present: Postdoctoral researcher at USTC, China
- June 2013-2014: Visiting Lecturer at Punjab University, Pakistan
- June 2014-2016: Teacher Trainer at KIPS College, Pakistan

Education:

- June 2016-2020: (CAS-TWAS fellowship)
- Ph.D student in Nuclear and Particle Physics at USTC, China
- June 2011-2013: (CGPA 4.0/4.0)
- Masters's Degree in High Energy Particle Physics at Punjab University, Pakistan
- June 2006-2010: (Gold Medal)
- Bachelor's Degree in High Energy Particle Physics at Punjab University, Pakistan

Research Areas:

- BESIII Collaboration since 2017, I have joined USTC working on:
- Charmonium Physics \rightarrow Radiative transition of $\psi(2 S)$
- $\tau-\mathrm{QCD} \rightarrow$ Form factor and Relative Phase measurements
- Regularly presented work at BESIII Collaboration meeting and Workshops Today I will focus on the recent results achieved at USTC and future plans

Publication and Achievement

Publication

- First measurements of $\chi_{c J} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}(J=0,1,2)$ decays \rightarrow M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 101, 092002 (2020) link

Work Under Review

- Measurement of the $e^{+} e^{-} \rightarrow \Sigma^{0} \bar{\Sigma}^{0}$ cross section from production threshold to 3.02 GeV at BESIII link. (BAM-00441 at Collaboration Wide Review stage)

Internal Referee

- Study of Ξ^{-}Baryon Polarization in $\psi(3686) \rightarrow \Xi^{-} \bar{\Xi}^{+}$decay at BESIII (BAM-00487) link.

Achievements

- Participate in Hadron Physics Summer School in winter, presented a talk on "Improve the detector simulation techniques in Hadron Spectroscopy", JUFA Julich, Germany, September, 2018.
- CAS-TWAS President's Fellowship awarded for Ph.D study.
- University Gold Medal for obtaining first position in Bachelors in HEP.

Previous Work-I

Measurement of BFs of $\chi_{c J} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}(J=0,1,2)$ decays

Motivation-Theoretical Models

Models that can predicts the decay rates of $\chi_{c J} \rightarrow B \bar{B}$:

- Color Octet Mechanism (COM)
- The next higher Fock state in the p-wave charmonium so-called color octet
- This higher state is made up of the $c \bar{c}$ plus a gluon
- Helicity Selection Rule (HSR)
- When charmonium meson $J_{c \bar{c}}$ decaying into two light mesons h_{1} and h_{2}, the perturbative method gives the asymptotic behavior of the branching ratio as follows:

$$
\operatorname{BR}\left[J_{c \bar{c}}(\lambda) \rightarrow h_{1}\left(\lambda_{1}\right) h_{2}\left(\lambda_{2}\right)\right] \sim\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{c}^{2}}\right)^{\left|\lambda_{1}+\lambda_{2}\right|+2}
$$

- If $\lambda_{1}+\lambda_{2} \neq 0$, which will violate the HSR and it is supposed to be suppressed
- Quark Creation Model (QCM)
- The limits of the helicity conservation rule can be removed, so that some forbidden decay processes, i.e. $\chi_{c 0} \rightarrow B \bar{B}$ can be investigated.
- This model strengthened decay channels $\chi_{c J} \rightarrow \Lambda \bar{\Lambda}(J=0,2)$ are understood, by including only the color singlet contribution.
- Large BFs of $\psi(2 S) \rightarrow \gamma \chi_{c J}$ make $e^{+} e^{-}$collisions at the $\psi(2 S)$ resonance a very clean environment for $\chi_{c J}$ investigation.

Theoretical and Phenomenological Results

BFs comparison for various $\chi_{c J} \rightarrow B \bar{B}$ in units of 10^{-5}

Mode		$\chi<0$	$\chi_{c 1}$	$\chi_{c 2}$
$p \bar{p}$	BES	$27.1{ }_{-3.9}^{+4.3} \pm 4.7$	$5.7{ }_{-1.5}^{+1.7} \pm 0.9$	$6.5{ }_{-2.1}^{+2.4} \pm 1.0$
	PDG	22.1 ± 0.08	7.60 ± 0.34	7.33 ± 0.33
	Theory	. .	6.4	7.7
$\Lambda \bar{\Lambda}$	BESIII	$33.3 \pm 2.0 \pm 2.6$	$12.2 \pm 1.1 \pm 1.1$	$20.8 \pm 1.6 \pm 2.3$
	PDG	33.0 ± 4.0	11.8 ± 1.9	18.6 ± 2.7
	Theory	$\left(93.5 \pm 20.5^{a}, 22.1 \pm 6.1^{\text {b }}\right)(\mathbf{Q C M})$		$\left(15.2 \pm 1.7^{a}, 4.3 \pm 0.6^{b}\right)$
		11.9-15.1 (COM)	3.9	3.5
$\Sigma^{0} \Sigma^{0}$	BESIII	$47.7 \pm 1.8 \pm 3.5$	$4.3 \pm 0.5 \pm 0.3$	$3.9 \pm 0.5 \pm 0.3$
	PDG	44.0 ± 4	<4.0	<6.0
	Theory	$\left(25.1 \pm 3.4^{\text {a }}, 18.7 \pm 4.5^{\text {b }}\right)$...	$\left(38.9 \pm 8.8^{a}, 4.2 \pm 0.5^{b}\right)$
			3.3	5.0
$\Sigma^{+} \Sigma^{-}$	BESIII	$50.4 \pm 2.5 \pm 2.7$	$3.7 \pm 0.6 \pm 0.2$	$3.5 \pm 0.7 \pm 0.3$
	PDG	39.0 ± 7.0	<6.0	<7.0
	Theory	$5.6-6.9$ (COM)	3.3	5.0
$\Xi^{-}{ }^{+}$	BESIII	$53.0 \pm 2.7 \pm 0.9$	<3.4	<3.7
	PDG	48.0 ± 7.0	8.0 ± 2.1	<10.0
	Theory	$23.0 \pm 7.0(\mathrm{QCM})$. .	4.8 ± 2.1
			2.4	3.4
$\Xi^{\circ}{ }^{\circ}$	BESIII	$46.7 \pm 1.9 \pm 2.3$	$7.5 \pm 1.1 \pm 0.5$	$18.3 \pm 1.5 \pm 1.4$
	PDG	31.0 ± 8.0	<6.0	<10.0
	Theory	$23.0 \pm 7.0(Q C M)$	\cdots	4.8 ± 2.1
		\cdots	2.4	3.4

- Experimentally, there are no BFs results of $\chi_{c J} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}$, necessary to further test the validity of COM, HSR, QCM and prediction of isospin symmetry.

Summary of $\mathcal{B}\left(\chi_{c J} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}\right)$

Fit Results: The fitted signal yields of $\psi(3686) \rightarrow \gamma \chi_{c J}$ as a function of $M\left(n \pi^{-}\right)$.

BF measurements of $\chi_{J} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}$:

- First measurement ever, due to difficult reconstruction of $n \bar{n} \pi^{+} \pi^{-}$.
- Prove the isospin symmetry in strong interaction comparing to $\chi_{c J} \rightarrow \Sigma^{+} \bar{\Sigma}^{-}$.
- BF of $\chi_{c 0} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}$do not vanish, which demonstrates a strong violation of the HSR.
- Both COM and QCM fails to describe our measured result.

Results of the BFs (in units of 10^{-5}) for the measurement of $\chi_{c J} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}$

Channel	This work$\chi_{c J} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}$	$S(\sigma)$	BESIII$\chi_{c J} \rightarrow \Sigma^{+} \bar{\Sigma}^{-}$	Theoretical predictions	
				COM	QCM
$\chi_{c 0} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}$	$51.3 \pm 2.4 \pm 4.1$	30σ	$50.4 \pm 2.5 \pm 2.7$	5.9-6.9	18.1 ± 3.9
$\chi_{c 1} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}$	$5.7 \pm 1.4 \pm 0.6$	5.8σ	$3.7 \pm 0.6 \pm 0.2$	3.3	\ldots
$\chi_{c 2} \rightarrow \Sigma^{-} \bar{\Sigma}^{+}$	$4.4 \pm 1.7 \pm 0.5$	3.6 \%	$3.5 \pm 0.7 \pm 0.3$	5.0	4.3 ± 0.4

Work Under Review-II

Study of $\Sigma^{0} \bar{\Sigma}^{0}$ from $\sqrt{s}=2.3864$ to 3.0200 GeV using R-scan data

Space- and Timelike EMFFs

- EMFFs are accessed in kinematical regions of (transfered squared four-momentum) q^{2} through study of space- and timelike processes.
- Hyperons are difficult to study in the SL region but TL form factors offers the best opportunity to study of Hyperons.
- Time-like baryons EMFFs is accessible in $e^{+} e^{-}$collision.
- Our aim to probe the cross section near threshold of hyperon pairs experimentally.

Baryon Form Factors (EMFFs)

Spin 1/2 Baryons:

- Two independent EMFFs: $G_{E}(s), G_{M}(s)\left(s=q^{2}\right.$, four momentum transfer).
- In one-photon exchange: $\left(\tau=\frac{q^{2}}{4 m_{B}^{2}}, \beta=\sqrt{1-\frac{4 m_{B}^{2}}{q^{2}}}\right.$, Coulomb factor C)
- Total cross section: $\sigma_{B \bar{B}}(s) \equiv \frac{4 \pi \alpha^{2} \beta C}{3 s}\left[\left|G_{M}(s)\right|^{2}+\frac{1}{2 \tau}\left|G_{E}(s)\right|^{2}\right]$
- Effective FFs: $\left|G_{\text {eff }}(s)\right|=\sqrt{\frac{\sigma(s)}{\frac{4 \pi \alpha^{2} \beta C}{3 s}\left[1+\frac{1}{2 \tau}\right]}}$
- Observed Threshold Enhancement: For example $p \bar{p}, \Lambda \bar{\Lambda}, \Lambda_{c} \bar{\Lambda}_{c}, \ldots$
- Hyperons FFs are hardly explored. The precision of hyperons FFs are quite poor and better results to be demanded in future.
[https://docbes3.ihep.ac.cn/DocDB/0007/000742/004/sigsig.pdf]

Summary of $e^{+} e^{-} \rightarrow \Sigma^{0} \bar{\Sigma}^{0}$

Outlooks:

- Cross section lineshape for $e^{+} e^{-} \rightarrow \Sigma^{0} \bar{\Sigma}^{0}$ is well fitted by pQCD-motivated function.
- Improved precision compared to BaBar's measurements over 50% above $\sqrt{s} \geqslant 2.5000 \mathrm{GeV}$.
- Novel method has applied at production threshold, no significant signal is observed at 2.3864 GeV .
- An asymmetry of isospin triplet is observed, and consistent with their incoherent sum of squared of charges of valence quraks.
- Cross section between Λ and Σ^{0} is shown to provide the proof for diquark-correlation.
- For complete determination of FFs more data sets will be needed in future at BESIII.

- Our results provide a valuable experimental inputs to understand the hyperons-antihyperons production in both strong and EM interactions.

Proposed Work joint effort of USTC and Ferra group Itlay

Phase between the Strong and Electromagnetic Amplitudes of $J / \psi(\psi(2 S)) \rightarrow \Sigma \bar{\Sigma}$ Decays, using $J / \psi(\psi(2 S))$ scan data

Physics-

J / ψ Strong and EM Decay Amplitudes:

Resonant contributions:

- pQCD: all amplitudes almost real ${ }^{[1,2]}$
- QCD \rightarrow small phases foreseen $\Phi_{3 g, \gamma} \sim 10^{\circ}$
- Experimental observation \rightarrow Large Phase foreseen

Non-resonant continuum:

In pQCD regime

- $A_{\gamma} \in \mathcal{R}$
- If both real, continuum and resonant amplitudes must interfere
- Phase b/w $A_{3 g}, A_{\gamma} \rightarrow\left(\Phi_{3 g, \gamma} \sim 0^{\circ} / 180^{\circ}\right)$
\rightarrow No theory can give the satisfactory explanation of the origin of $\Phi_{3 g, \gamma} \rightarrow$ better knowledge of it may lead profound understanding of charmonia decays.
[1] Phys. Rev. Lett. 59, 621 (1987)

[2] Nucl. Phys. B 246, 52 (1984)

Theoretical predication:

- Model depended approach using $\mathrm{SU}(3)$ flavor symmetry suggested:
- $\Phi_{3 g, \gamma} \sim 90^{\circ} \rightarrow$ No interference

Experimental results:

- Indirect results based on $\mathrm{SU}(3)$

■ $J / \psi \rightarrow \mathrm{N} \overline{\mathrm{N}}\left(1 / 2^{+} 1 / 2^{-}\right) \quad \Phi_{3 g, \gamma}=(88.7 \pm 8.1)^{\circ}{ }^{[\mathbf{1}]}$
■ $J / \psi \rightarrow \operatorname{VP}\left(1^{-} 0^{-}\right)$
$\Phi_{3 g, \gamma}=(106 \pm 10)^{\circ}{ }^{[2]}$

- $J / \psi \rightarrow \mathrm{PP}\left(0^{-} 0^{-}\right)$
$\Phi_{3 g, \gamma}=(89.6 \pm 9.9)^{\circ}[\mathbf{3}]$
■ $J / \psi \rightarrow \mathrm{VV}\left(1^{-} 1^{-}\right)$
$\Phi_{3 g, \gamma}=(138 \pm 37)^{\circ}{ }^{[\mathbf{3}]}$
- $\psi(2 S) \rightarrow \mathrm{PP}\left(0^{-} 0^{-}\right)$
$\Phi_{3 g, \gamma}=(95 \pm 15)^{\circ}[4]$
■ $\psi(2 S) \rightarrow \mathrm{NN}\left(1 / 2^{+} 1 / 2^{-}\right)$
$\Phi_{3 g, \gamma}=(-98 \pm 25)^{\circ}$ or $(134 \pm 25)^{\circ}$
■ $\psi(2 S) \rightarrow \mathrm{VP}\left(1^{ \pm} 0^{-}\right) \quad \Phi_{3 g, \gamma} \sim 0^{\circ}$ No evidence for large phase
- Direct results through lineshape scan
- $J / \psi \rightarrow 5 \pi \quad \Phi_{3 g, \gamma}=(84 \pm 3.6)^{\circ}$ or $(-84.9 \pm 3.6)^{\circ}$
- All analyses revealed that a relative orthogonal phase exist $\mathbf{b} / \mathbf{w} A_{3 g}$ and A_{γ}
[1] Phys. Rev. D 86, 032014 (2012)
[3] Phys. Rev. D 60, 051501 (1999)
[2] Phys. Rev. D 41, 01389 (1990)
[4] Phys. Rev. D 74, 011105 (2006)

Why this measurement is important?

- Jump has been observed while studied $e^{+} e^{-} \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ at 3.08 GeV at BESIII.
- $J / \psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ decays the phase may not be compatible with 90°.
- Scan below and at $J / \psi(\psi(2 S))$ resonance data provides unique opportunity for the first ever phase measurement of hyperon-antihyperon $\left(\Sigma^{\circ} \bar{\Sigma}^{\circ}\right)$ at BESIII.
- It should be a bed-test for perturbative QCD (pQCD) model predictions, $\mathrm{SU}(3)$ symmetry and $\mathrm{SU}(3)$ symmetry breaking hypotheses.
- With a model independent fit to study the interference pattern

BAM-00441

Phase Measurement

Prelimanry Results

Preliminary Results by J / ψ lineshape

1. Fitting Result for $J / \psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$

Preliminary value of phase: $\Phi_{3 g, \gamma} \approx \pm(157.0 \pm 49.3)^{\circ} \rightarrow$ Ref.link1

2. Fitting Result for $J / \psi \rightarrow \Sigma^{+} \bar{\Sigma}^{-}$

Preliminary value of phase: $\Phi_{3 g, \gamma} \approx \pm(114.5 \pm 12.7)^{\circ} \rightarrow$ Ref.link2

- Preliminary results reveal that $\Phi_{3 g, \gamma}$ amplitudes of $J / \psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ decay is not compatible with $\sim 90^{\circ}$.
- Current result is inconsistent with prediction based on $\mathrm{SU}(3)$ octet baryons and favor to the pQCD .
- First measurement ever, since we always treated the phase for $\operatorname{SU}(3)$ octet baryons to be same as $\sim 90^{\circ}$.
- Large relative phase value brings a new challenge for theoretician to deeply understand the quarkonium
 dynamic.
- Since phase 90° is virtually impossible in $\psi(2 S)$ decays as predicted. So, it is matter of great concern the large phase is consistent with the $\psi(2 S)$ data.
- Exciting 4-years of PhD at USTC and China.
- I have joined BESIII Collaboration since 2017 and published one article in Physical Review D and completed one Memo-BAM-00441.
- Starting from June 2020 till now, I am postdoctoral researcher at USTC.
- On-going analysis BAM-00441 is in CWR stage at BESIII and intended general to be Physics Letters B.
- At present, I am assigning internal referee of BAM-00487 at BESIII.
- Responsible for phase project at USTC and already achieved preliminary results for two process $J / \psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ and $J / \psi \rightarrow \Sigma^{+} \bar{\Sigma}^{-}$.

Future plan

- Active participation in Physics measurements using BESIII data and focus on phase study through $J / \psi(\psi(2 S))$ lineshape scan (direct approach).
- Our plan to present the phase measurement $J / \psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ in upcoming BESIII Workshop held in Lanzhou University.
- Use my expertise in hyperon reconstruction to explore new aspects by studying $\psi(2 S) \rightarrow \Sigma^{0} \bar{\Sigma}^{0}$ lineshape.

Thanks for your attention!

Back up

Ecm (GeV)	RunID	BEMS ECM(GeV)	$\mathbf{L}_{\mathbf{i n t}}\left(\mathbf{n b} \mathbf{}^{\mathbf{1}}\right.$)
3.0500	$28312-28346$	3.050206 ± 0.000026	14919 ± 161
3.0600	$28347-28381$	3.059257 ± 0.000028	15060 ± 161
3.0830	$28382-28387,28466-28469$	3.083060 ± 0.000023	4769 ± 55
3.0900	$28388-28416,28472-28475$	3.089418 ± 0.000022	15558 ± 165
3.0930	$28417-28453,28476-28478$	3.092324 ± 0.000025	14910 ± 160
3.0943	$28479-28482$	3.095261 ± 0.000084	2143 ± 25
3.0952	$28487-28489$	3.095994 ± 0.000081	1816 ± 21
3.0958	$28490-28492$	3.096390 ± 0.000075	2135 ± 25
3.0969	$28493-28495$	3.097777 ± 0.000076	2069 ± 26
3.0982	$28496-28498$	3.098904 ± 0.000075	2203 ± 25
3.0990	$28499-28501$	3.099606 ± 0.000093	756 ± 11
3.1015	$28504-28505$	3.101923 ± 0.000106	1612 ± 21
3.1055	$28506-28509$	3.106144 ± 0.000090	2106 ± 25
3.1120	$28510-28511$	3.112615 ± 0.000093	1720 ± 21
3.1200	$28512-28513$	3.120442 ± 0.000115	1264 ± 16

B.X. Zhang, Luminosity measurement for J/psi phase and lineshape study

- Analysis Environment: Under the BOSS 6.6.4.p01

Ecm (GeV)	RunID	Number of Run	Data taken time	$\mathcal{L}\left(\mathrm{pb}^{-1}\right)$
3.5815	$55375-55461$	83	$180505-180508$	84.604 ± 0.082
3.6702	$55462-55541$	80	$180508-180512$	83.582 ± 0.084
3.6081	$55542-55635$	91	$180512-180515$	83.060 ± 0.083
3.6828	$55636-55662$	26	$180516-180516$	28.175 ± 0.049
3.6842	$55663-55690$	28	$180517-180518$	27.840 ± 0.048
3.6853	$55691-55716$	25	$180519-180519$	25.342 ± 0.046
3.6865	$55717-55737$	20	$180519-180520$	24.481 ± 0.045
3.6914	$55738-55795$	57	$180520-180523$	68.647 ± 0.076
3.7098	$55796-55859$	60	$180523-180525$	69.326 ± 0.077

B.X. Zhang, Luminosity measurement for $\psi(2 S)$ phase and lineshape study

- Analysis Environment: Under the BOSS 7.0.4

Lineshape of $J / \psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$

To Fit the Lineshape:

- The cross section of $e^{+} e^{-} \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}$ is expressed as:

$$
\sigma(W)=\left|D_{\frac{S e^{i \phi}+E}{M_{J / \psi}-W-i \Gamma_{J / \psi} / 2}}-C\right|^{2}
$$

- $\boldsymbol{B}_{J / \psi \rightarrow \Sigma^{0} \bar{\Sigma}^{0}}=$ constant $\times\left|\boldsymbol{S} e^{i \phi}+\boldsymbol{E}\right|^{2}$
- where constant $=1 / 0.3894 \times 10^{9}\left(\right.$ pb-to- GeV^{-2} conversion factor)
- $J / \psi \rightarrow e^{+} e^{-}$Amplitude: $D=\frac{\Gamma_{J / \psi} / 2}{M_{J / \psi}} \sqrt{12 \pi B_{J / \psi \rightarrow e^{+} e^{-}}}$

For Continuum Amplitude:

- $\sigma_{\text {cont }}(W)=\sigma_{o}\left(\frac{W_{o}}{W}\right)^{\mathrm{pQCD}}=C^{2}$
- $C=\sqrt{\sigma_{\mathrm{o}}(3 \mathrm{GeV})}\left(\frac{3 \mathrm{GeV}}{W}\right)^{\frac{p_{\mathrm{QCD}}}{2}}=5$

Electromagnetic Amplitude: EM contribution to the Feynman diagram, we look at ratio b/w $B_{\text {out }}$ of the final state and $B_{\mu \mu}$. EM amplitude simplified as:

- $E=\sqrt{\frac{C^{2}}{\sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}} B_{J / \psi \rightarrow \mu^{+} \mu^{-}}}$

To Fit the Lineshape: To incorporating the the effect of radiative function $F(x, W)$ and Energy Spread S_{E} in the fit, the dressed Born cross section is modified as;

- Step1. Incorporating the radiative correction $F(x, W)$:

$$
\sigma^{\prime}(W)=\int_{0}^{1-\left(\frac{W_{\min }}{W}\right)^{2}} d x F(x, W) \sigma(W \sqrt{1-x})
$$

- Step2. Energy spread S_{E} is included by convolving with Gaussian function by set the width of S_{E}. The Born cross section becomes:

$$
\sigma^{\prime \prime}(W)=\int_{W-n S_{E}}^{W+n S_{E}} \frac{1}{\sqrt{2 \pi} S_{E}} \exp \left(\frac{-\left(W-W^{\prime}\right)^{2}}{2 S_{E}^{2}}\right) \sigma^{\prime}\left(W^{\prime}\right) d W
$$

Minimization Function: The fitting parameters are obtained by means of χ^{2} minimization as:

$$
\chi_{\min }^{2}=\sum_{i=1}^{15} \frac{\left(\sigma_{i}^{\text {obs }}-\sigma^{\prime \prime}\left(W_{i}\right)\right)^{2}}{\left(\Delta \sigma_{i}^{\mathrm{obs}}\right)^{2}+\left[\left(\sigma^{\prime \prime}\left(W_{i}+\frac{\Delta W_{i}}{2}\right)-\sigma^{\prime \prime}\left(W_{i}-\frac{\Delta W_{i}}{2}\right)\right)\right]^{2}}
$$

where error along X-axis, is projected along the Y-axis.

Preliminary Result $J / \psi \rightarrow \Sigma^{\circ} \bar{\Sigma}^{\circ}-$

Branching Fractions:

- Since the parameters are high correlated therefore, the error in the $\operatorname{BF}\left(J / \psi \rightarrow \Sigma^{0} \bar{\Sigma}^{0}\right)$ is obtained after parametrized the value of each parameter.

This Work

- In PDG: BF = $(1.172 \pm 0.031) \times 10^{-3}$
- For + ve phase: BF
$=(1.428 \pm 0.035) \times 10^{-3}$
- For -ve phase: BF
$=(1.442 \pm 0.032) \times 10^{-3}$
- Floating all parameters in a fit such as; Strong, Continuum, $\Phi_{3 g, \gamma}$ and S_{E}.

Solution	$\Delta \Phi_{3 g, \gamma}\left({ }^{\circ}\right)$	SE (MeV)	$\mathbf{B F}\left(J / \psi \rightarrow \Sigma^{0} \bar{\Sigma}^{0}\right)$	$\chi^{\mathbf{2}} / \mathbf{n d f}$
Sol-I	157.0 ± 49.3	0.915 ± 0.0004	$(1.428 \pm 0.035) \times 10^{-03}$	$9.36 / 11.0$
Sol-II	-156.7 ± 47.4	0.915 ± 0.0004	$(1.442 \pm 0.032) \times 10^{-03}$	$9.36 / 11.0$

Fitting results on J / ψ lineshape from $\Sigma^{0} \bar{\Sigma}^{0}$ with statistical error only.

