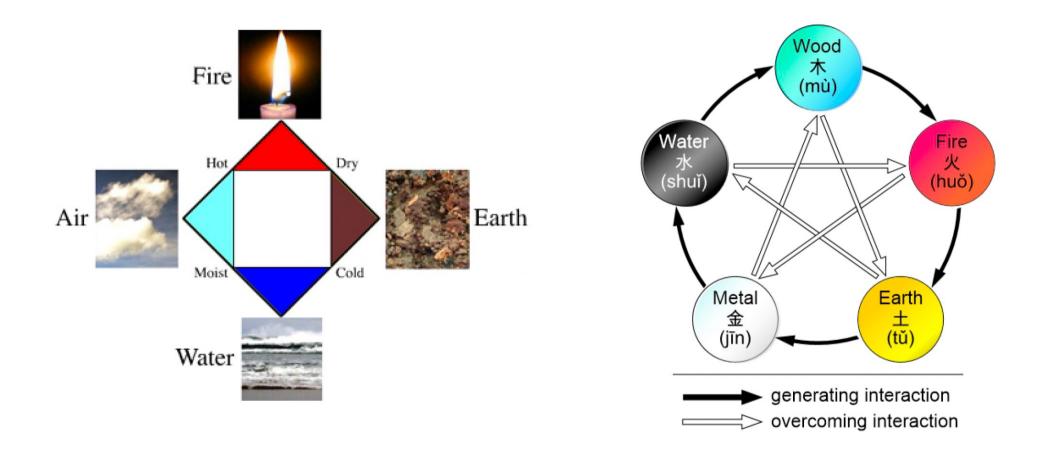
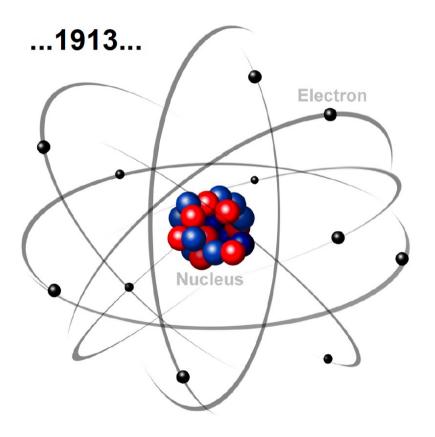


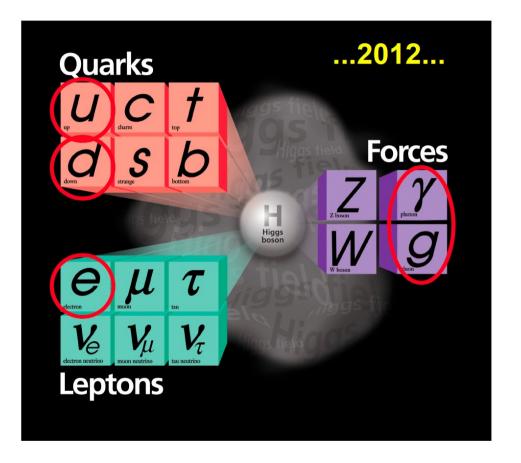
Circular Electron Positron Collider: Science & Status

Manqi RUAN(IHEP, Beijing)

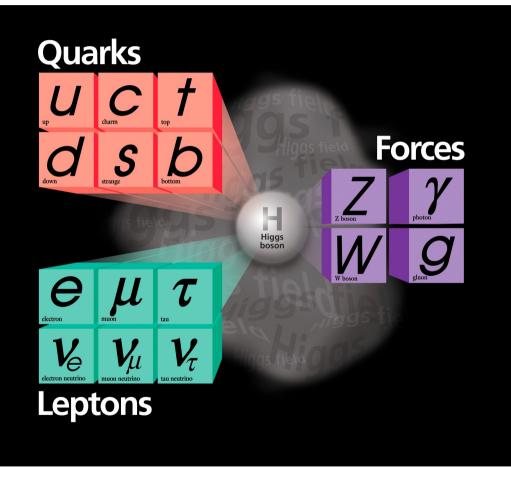

25/8/23

What's the world made of?

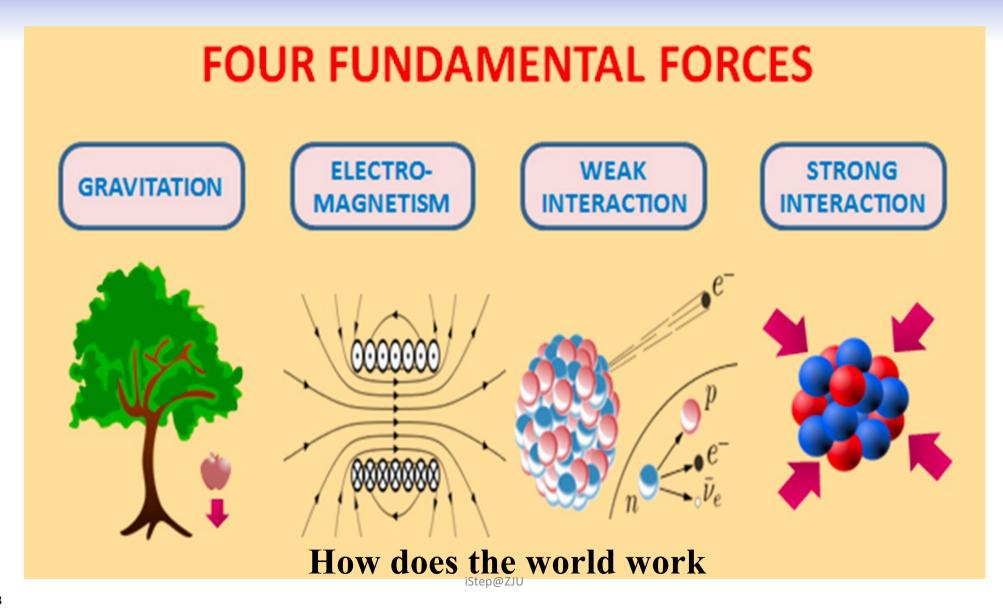

How does the world work?

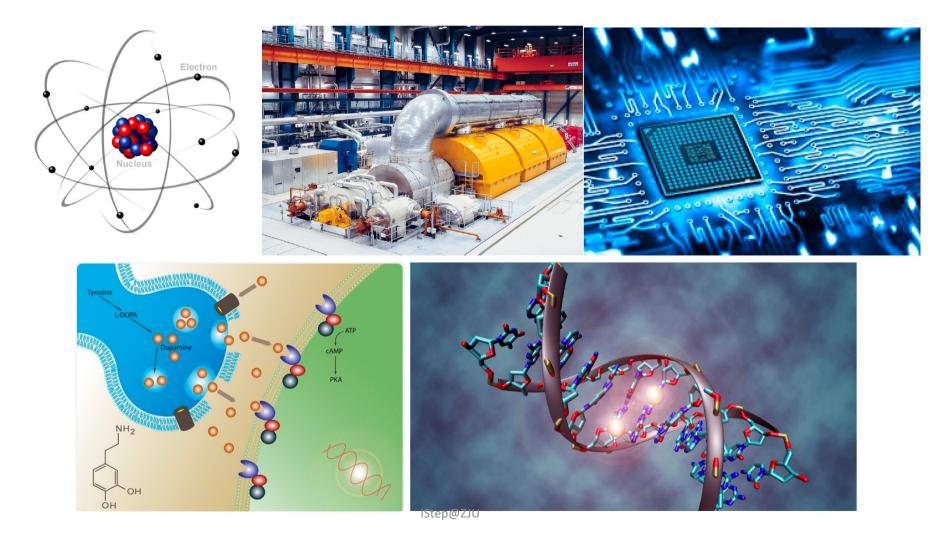

iStep@7ILI

~ 3000 years ago

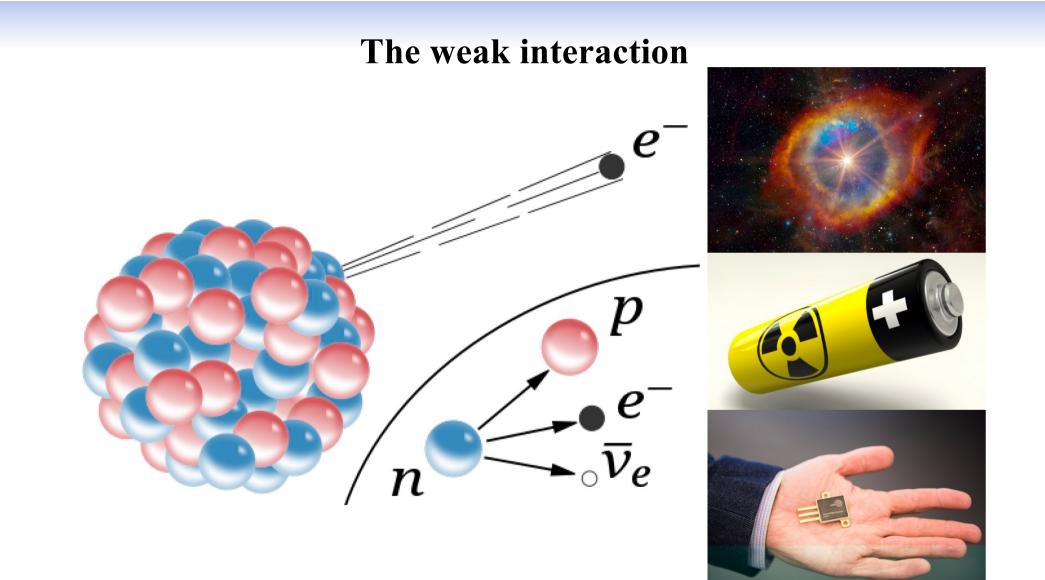


...20th to 21st century

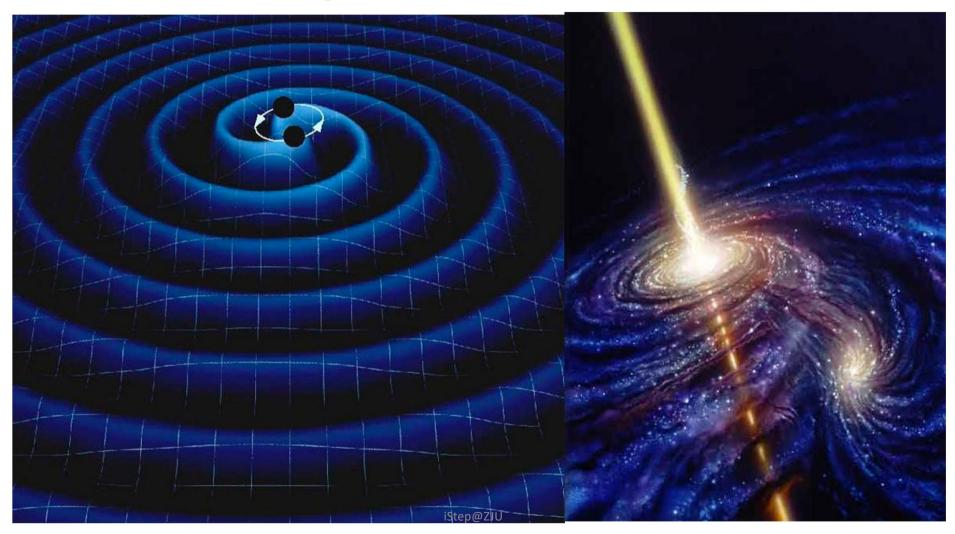



The SM of particle physics: predicts lots of new particles, and found them in the experiments

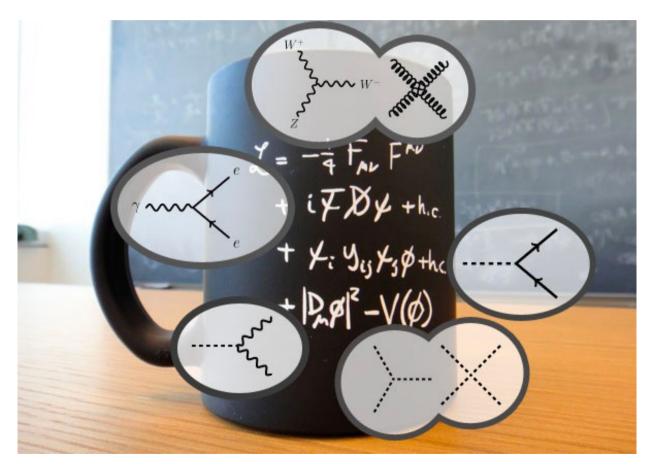
- Discoveries (Nobel Price in Physics)
 - 2015, 2013
 - 2002
 - 1995, 1990
 - 1988, 1984, 1980
 - 1976
 - 1969
 - 1959, 1951, 1950
- Instrumentations
 - 1992
 - 1968, 1960
 - 1958
 - 1948



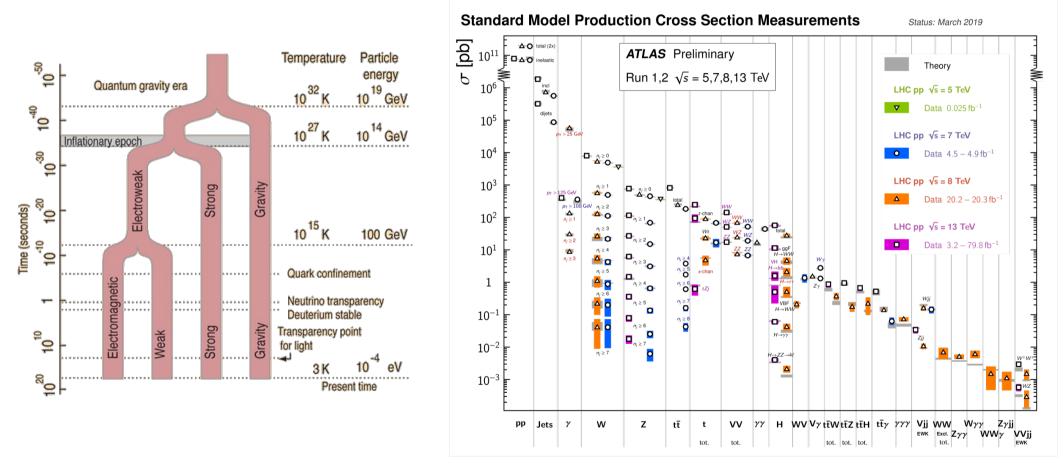
The electromagnetic interaction



The strong interaction

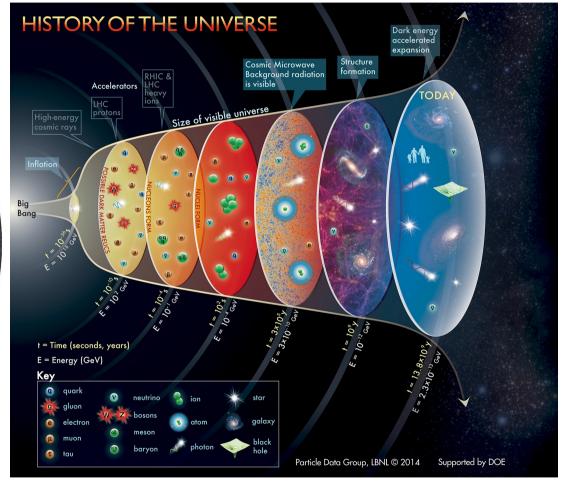


The gravitational interaction



The SM of particle physics: unifies the strong, the weak, and the electromagnetic interactions

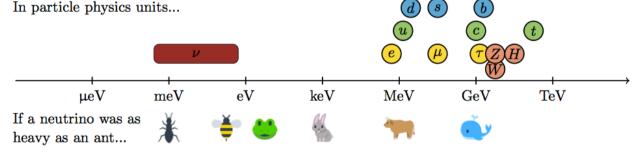



- Relevant Nobel prices (theoretical)
 - 2008
 - 2004
 - 1999
 - 1979
 - 1965
 - 1957
 - 1949

The SM: predicts and interprets almost all the experimental data at accelerator experiments

The SM: describes the fundamental interactions that governs the evolution of universe: from 0.1 ns after Big Bang until now

The challenges to the SM: Neutrino mass & Oscillation


The challenges to the SM: mass hierachy

Higgs

Forces

- Electrons mass ~ 1E-5 * Top quark mass
- Neutrino mass ~ 1E-15 * top • quark mass!
- Are their mass generated with the same mechanics?

In particle physics units...

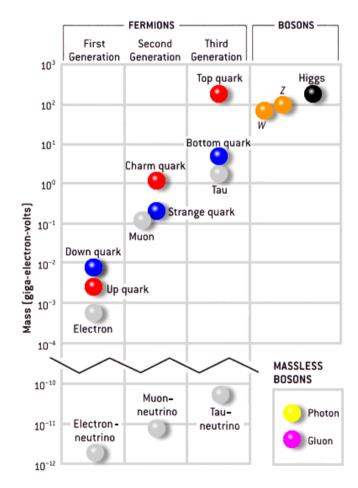
Quarks

S

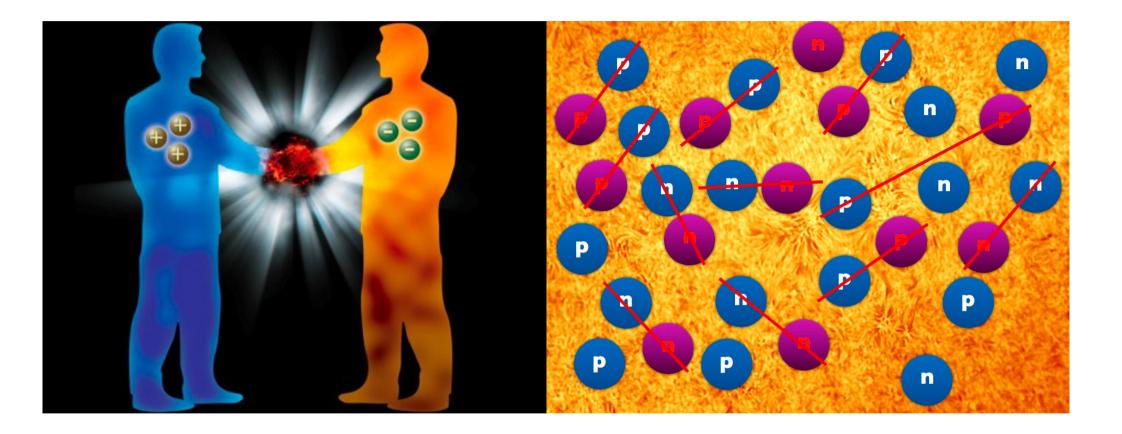
μ

b

au

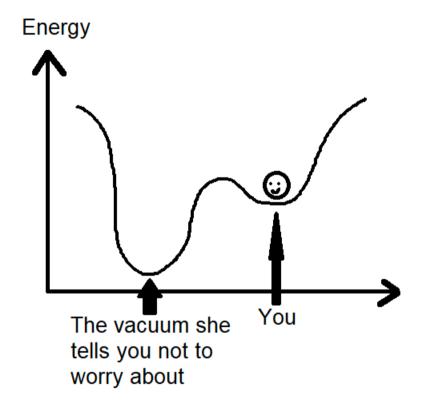

U

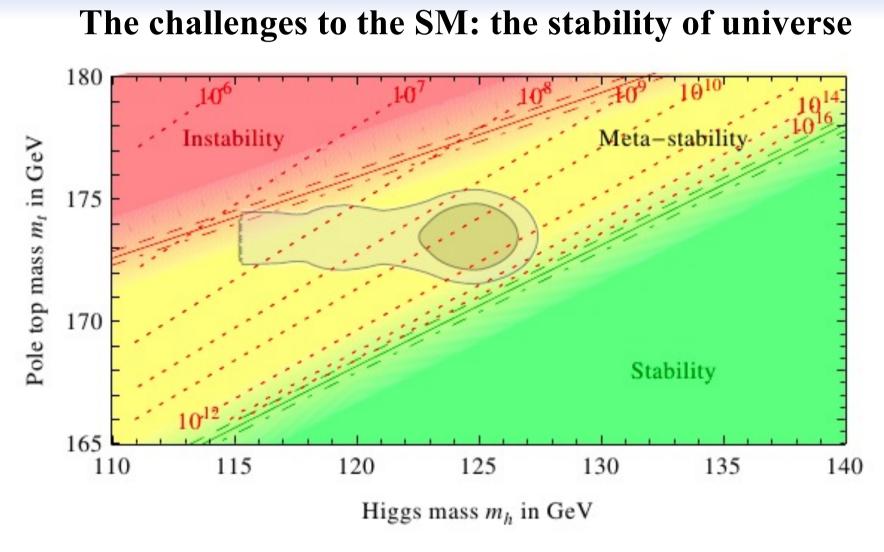
d


e

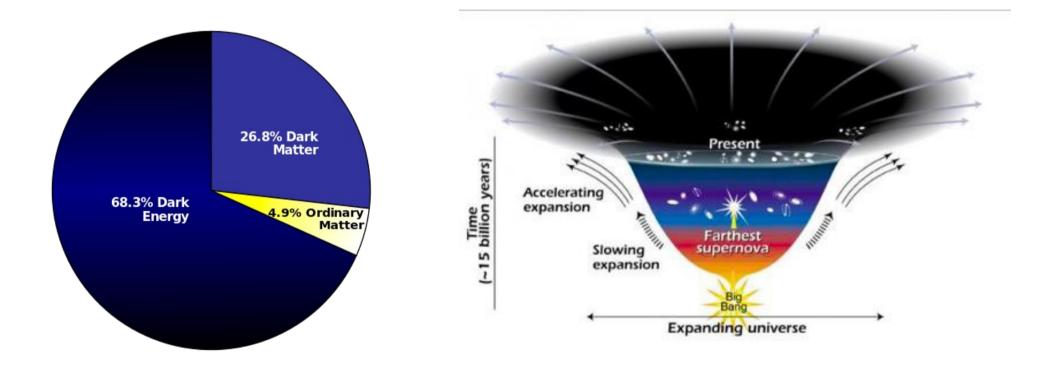
Ve

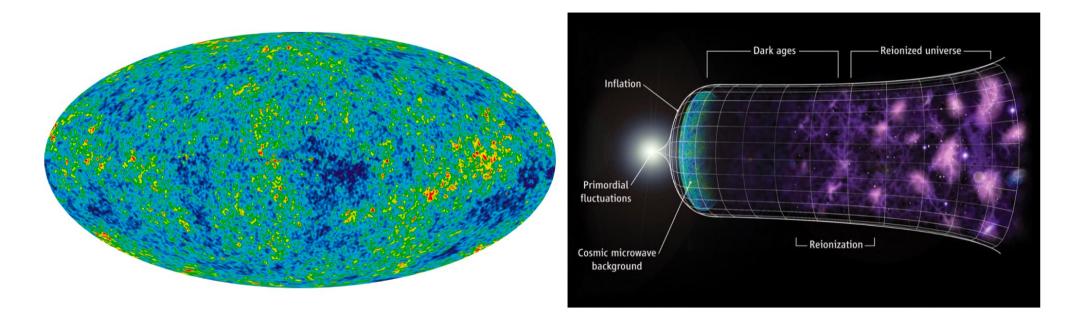
Leptons




The challenges to the SM: what's the origin of matter?

The challenges to the SM: the stability of universe

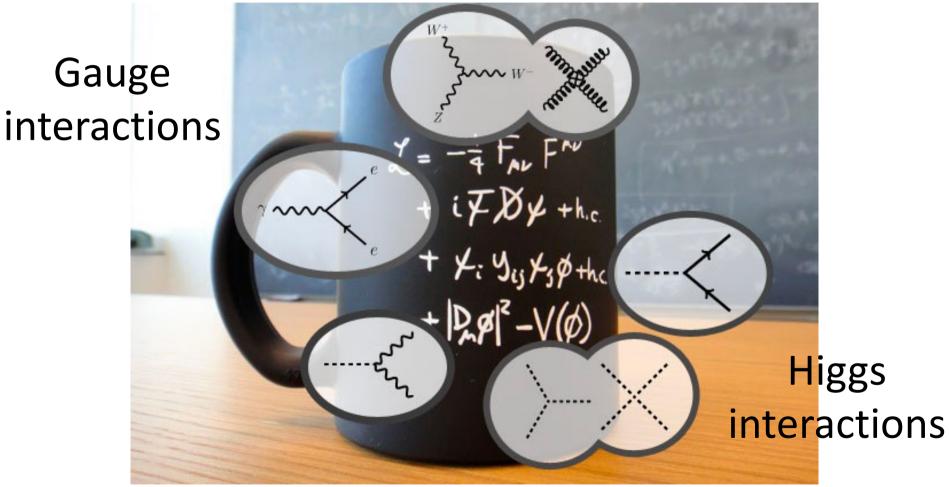




iStep@ZJU

The challenges to the SM: dark matter, dark energy

The challenges to the SM: Inflation in the early universe


The challenges to the SM

- Inflation
- Mass hierarchy
- Neutrino Mass
- Matter-Anti matter asymmetry
- Stability of the Universe: depends on the Particle Mass
- Dark Matter: nature & origin of mass...
- Dark Energy, Inflation: nature...

The challenges to the SM

- Inflation
- Mass hierarchy
- Neutrino Mass
- Matter-Anti matter asymmetry
- Stability of the Universe: depends on the Particle Mass
- Dark Matter: nature & origin of mass...
- Dark Energy, Inflation: nature...

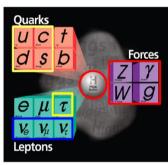
The Higgs field, heart of the SM

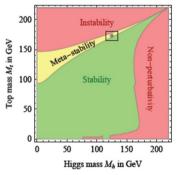
The Higgs field, origin of mass – associated with most of the Challenges to the SM

- Higgs interactions: beyond the gauge interactions
- Determines the mass of the SM particles,
 - The mass of electron size of the atom
 - The mass of W & Z boson strength of the weak interaction
 - The mass of up & down quark stability of the proton
 - The mass of top & Higgs stability of the universe
- Couples to the matter & anti-matter in a slightly different manner -> origin of matter
- Could well be the origin of dark matter mass, and could be also highly relevant to the dark energy & inflations

A brief introduction to CEPC

- CEPC: an e⁺e⁻ Higgs factory producing H and W/Z bosons and top quarks aims at discovering new physics beyond the Standard Model
 - CEPC + SppC complex proposed in 2012 right after the Higgs discovery
 - Conceptual Design Report delivered in Nov. 2018, 1st for circular ee Higgs factory
 - R&D reaching maturity, accelerator TDR planned for 2023, high-impact innovations



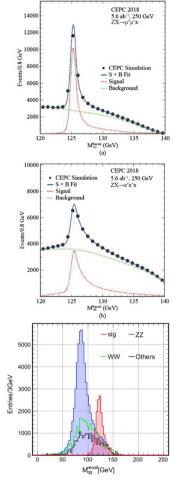


- We have a very successful Standard Model
- But we still have a lot of issues and questions:
 - Anything fundamentals behind the flavor symmetry ?
 - Mass hierarchy of elementary particles normal ?
 - Fine tuning of Higgs mass natural ?
 - Why a meta-stable vacuum ?
 - What are dark matter particles ?
 - No CP in the SM to explain Matter-antimatter asymmetry
 - Dirac or Majorana Neutrino mass?
 - Unification of interactions at a high energy ?

• We are at a turning point:

- a new, much deeper theory ?
- Choices of experimental approaches ?
 - $e^{\pm}e^{-}$, pp, ep, $\mu^{\pm}\mu^{-}$ or no machine ?

• "Small cost" to look for hints. If yes, go for direct searches


$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i} \qquad \delta \sim c_i \frac{v^2}{M^2}$$

No signal at LHC:

Direct searches: M ~ 1 TeV 10% precision: M ~ 1 TeV Look for signals at CEPC/FCC-ee: Precisions exceed HL-LHC ~ 1 order of magnitude (1% precision) → M ~10 TeV

Naturalness will be at ~10⁻⁴ up to 10 TeV If no New Physics up to 10 TeV, there will be no naturalness → even bigger discovery ?

Pressing science questions, best addressed by an e⁺e⁻ Higgs factory (~1% precision)

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC

 Fenfen Au(安芬芬^{1,37})
 Yu Bai($\pm 39^3$)
 Chundmi Chen($\hbar 8 \mp 89^3$)
 Xin Chen($\hbar 83^3$)
 Zhenxing Chen($\hbar 8 \mp 89^3$)

 Jaoa Gominarse da Costa[†]
 Zhenwel Cui($\hbar 8 \mp 80^3$)
 Yaquan Faug($\hbar 2 \mp 80^{-1.084}$)
 Chengdong Fur($\hbar 2 \pm 81^{-1.084}$)

 Jan Gacoffel(20^{-1})
 Anong Gacofffel(20^{-1})
 Name ($\pi = 68^{-1.084}$)
 Shafe ($\pi = 68^{-1.084}$)

 Jayo Guigari Bergei Concoff, $\hbar 20^{-1}$ Tuaming Gacofffel($\pi = 10^{-1.084}$)
 Shame ($\pi = 40^{-1.084}$)

 Hongjim Herd($\pi \pm 51^{-1}$)
 Sham Jac($\pi = 10^{-1.084}$)
 Kinogang Herd($\pi = 10^{-1.084}$)
 Shafe ($\pi = 10^{-1.084}$)

 Chia-Ming Kuo($\pi \pm 88^{-1.084}$)
 Lind($\# \pi \pi \pi^{-1.084}$)
 Rout Right($\pi = 10^{-1.084}$)

Yifang Wang(王敏芳)⁴⁵ Yuqian Wei(魏彧第)⁴ Yue Xu(许茂)⁵ Haijum Yang(杨策等)¹⁸¹¹ Ying Yang(杨强) Weiming Yao(俄芳尼)³ Dan Yu(于升)⁵ Kalii Zhang(孫策等)⁴⁶³⁰ Zhaoru Zhang(孫戰意)⁴ Minomi Zhao(君祖昭位⁵ - Zhaonu Zhao(君母⁴¹⁴)⁴⁵, ¹⁰¹ Ninz Avourd Sha⁴¹

CEPC Higgs White Paper

University of Chinese Academy of Science (UCAS), Beijing 100049, China School of Nuclear Science and Technology, University of South China, Henzyang 21000, China Department of Physics, Nanjing University, Nanjing 210056, China Department of Physics, Noning University, Nanjing 210056, China Department of Physics, Nanjing University, NLPPA-OAG, SLPPC, Shanghai 200240, China "School of Physics and Antonnovy, Shanghai Jioo Tong University, NLPPA-OAG, SLPPC, Shanghai 200240, China "Issue-Dao Lee Timiture, Shanghai 200240, China France-Dao Lee Timiture, Shanghai 200240, China

+ o(100) journal/arXiv papers

Records 9 November 2014, Revised 21 Jammy 2015, Published sulie 4 March 2019 • Supported by the Namiaa Key Royman (SK SSATEA International Partnerschip Pargum (Sc Status Fernau, (D'13)201855), IEEE James Science Studie of the Tim Unseata Lehane Parget, the ACSSATEA International Partnerschip Pargum (Sc Status Fernau, (D'13)201855), IEEE James resolution of the Tim Unseata Lehane Parget, the ACSSATEA International Partnerschip Pargum (Sc Status Fernau, (D'13)201855), IEEE James resolution of the Tim Unseata Lehane Parget, the ACSSATEA International Partnerschip Pargum (Sc Status Fernau, (D'13)201855), IEEE James resolution of the Tim Unseata View (Sc Status Fernau, Parget), IEEE James (Sc Status Fernau), IEEE, James (Sc Status Fernau), IEEE, James (Sc Status Fernau), IEEE, James (Sc Status Fernau), IEEE James (Sc Status Fernau Table 2.1: Precision of the main parameters of interests and observables at the CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC

projections of 3000 fb^{-1} data are used for comparison. [2]

W, Z and top		
recision		
2		
1eV		
eV		
4		
3		
4		
4		
-5		
5		
4		
4		

Scientific Significance quantified by CEPC physics studies, via full simulation/phenomenology studies:

• Higgs: Precisions exceed HL-LHC ~ 1 order of magnitude.

iStep@ZJU

- EW: Precision improved from current limit by 1-2 orders.
- Flavor Physics, sensitive to NP of 10 TeV or even higher.
- Sensitive to varies of NP signal.

.

. . .

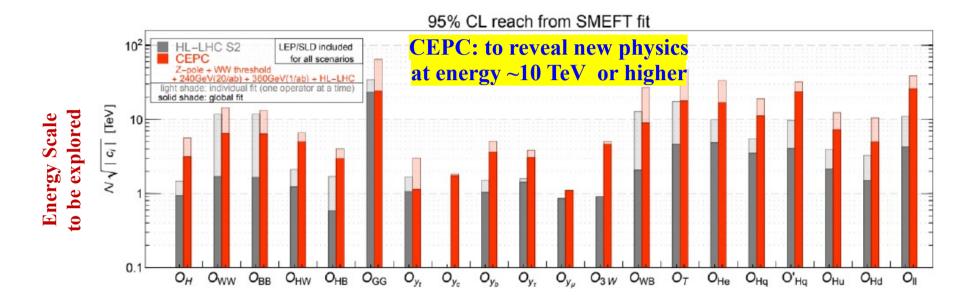


Figure 2.1: Covered energy scales of new physics from CPEC and HL-LHC, based on measurements of operators in the framework of the Standard Model Effective Field Theory (SMEFT). [1]

CEPC targets a major breakthrough in basic research, will greatly expand our understanding of the world.

The scientific importance and strategical value of an electron positron Higgs factory is clearly identified.

clear consensus in HEP community

2013, 2016: the CEPC is the best approach and a major historical opportunity for the national development of accelerator-based high-energy physics program.

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

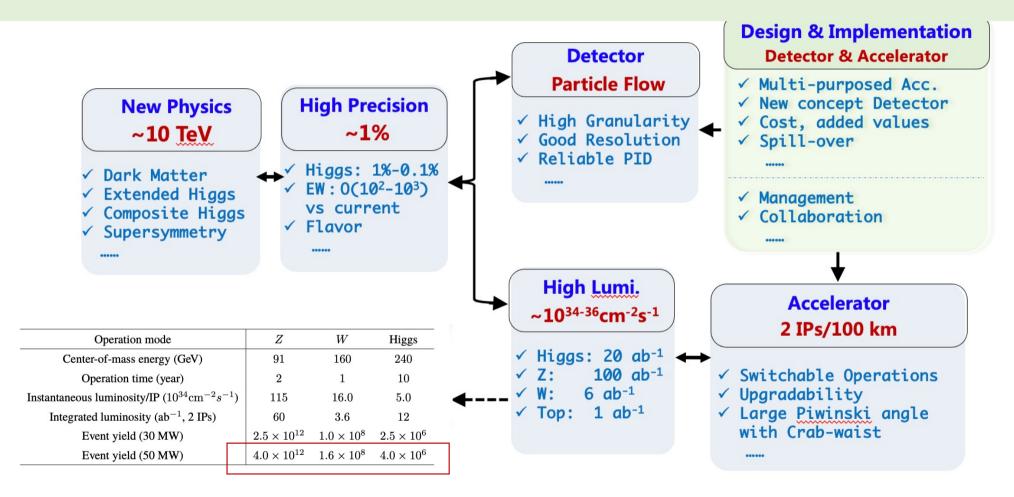
European Strategy

Update

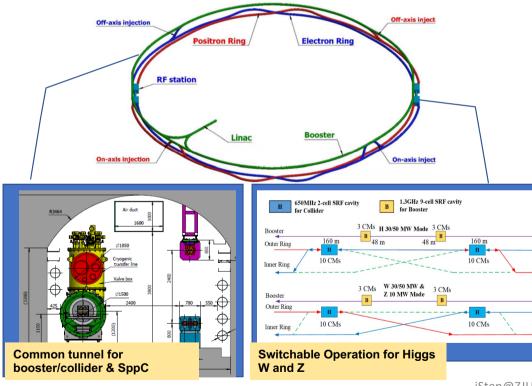

In April 2022, the International Committee for Future Accelerators (ICFA) "reconfirmed the international consensus on the importance of *a Higgs factory as the highest priority for realizing the scientific goals of particle physics*", and expressed support for the above-mentioned Higgs factory proposals. Recently, the United States also proposed a new linear collider concept based on the cool copper collider (C3) technology [31].

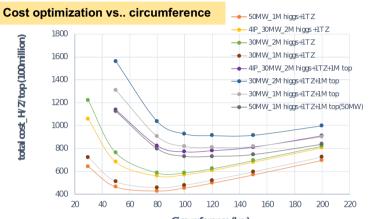
iStep@ZJU

2020


ridhara Dasu (Wisconsin)

International competition & Comparative advantages


- Electron-positron Higgs factories identified as top priority for future collider (ESPPU).
- <u>CEPC has strong advantages</u> among mature electron-positron Higgs factories (design report delivered),
 - Earlier data: collision expected in 2030s (vs. FCC-ee ~ 2040s), larger tunnel cross section (ee, pp coexistence)
 - Higher precision vs. linear colliders with more Higgs & Z; potential for proton collider upgrade.
 - Lower cost vs. FCC-ee, $\sim 1/2$ the construction cost with similar luminosity up to 240 GeV.
- CEPC is well recognized in particle physics world, as a major choice for the future flagship facility.

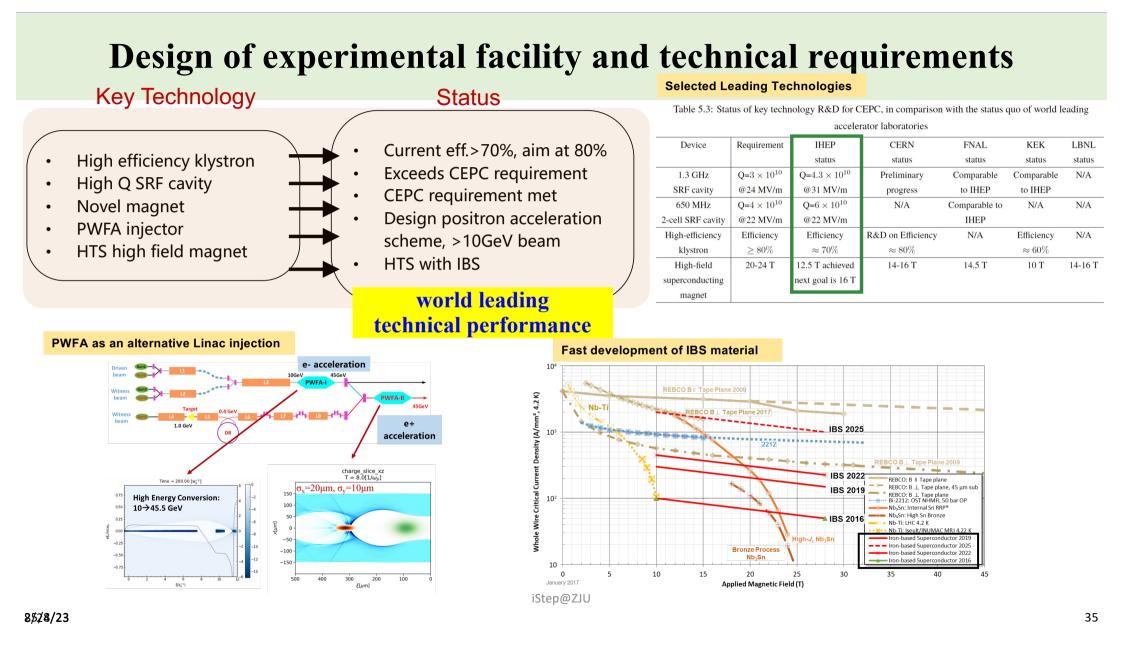

Key scientific and technological issues (route)

Design of experimental facility and technical requirements

- Circular collider: Higher luminosity than a linear collider
- 100km circumference: Optimum total cost, good also for SppC
- Shared tunnel: Accommodate CEPC booster & collider and SppC
- Switchable operation: Higgs, W/Z, top

Circumference (km) D. Wang *et al* 2022 *JINST* **17** P10018

ain Parameters: High				
minosity as a Higgs Factory	Higgs	W	Z	ttbar
Number of IPs	2			
Circumference [km]	100.0			
SR power per beam [MW]	50			
Energy [GeV]	120	80	45.5	180
Bunch number	415	2161	19918	59
Emittance (ɛx/ɛy) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7
Beam size at IP ($\sigma x/\sigma y$) [um/nm]	15/36	13/42	6/35	39/113
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9
Beam-beam parameters (ξx/ξy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1
RF frequency [MHz]	650			
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	27	192	0.83


Design of experimental facility and technical requirements

Innovative Design	 100km Full/Partial Double Rings Switchable operation for Higgs, W and Z Flexible injection modes to satisfy different energies World's 1st design of a high energy/flux gamma-ray synchrotron light
Technical Performance	 High efficiency Klystron (aim at highest transfer efficiency) High performance SRF cavities (state-of-the-art Q and gradient) Novel magnets: Weak field dipole, dual aperture magnets (First Qualified Prototype)
Major Technology Breakthrough	 Plasma wakefield acceleration for Injector(New Acceleration Principle) High field superconducting magnet (Iron based HTS proposal)

Innovative designs and key technology R&D fulfill the challenging requirement.

Design of experimental facility and technical requirements

Upgrade capability and added values

SR power per beam upgrade to **50 MW**: High Luminosity (8E34 @ 240 GeV)

The center-of-mass energy can increase to 360 GeV: top quark data

Add a super proton-proton collider (SppC) with c.m.s >100 TeV

Expandability: High energy & high flux synchrotron light source provides gamma-ray energy up to 300 MeV, critical for multi-disciplinary science

Boost the developments of multiple technologies: Fast electronics, mechanics, vacuum, beam diagnostics, RF acceleration, cryogenic system, novel magnets, high-accuracy power supplies, control systems, big data, automation and intelligence, etc

- > Upgradable scenarios: compatibilities included in design and construction
- > Upgrades in several highly valuable ways, bring up discovery power, lifetime spans > 5 decades
- > Significant spillover effects on multidisciplinary sciences and applications

- CEPC received ~ 260 Million CNY from MOST, CAS, NSFC, etc for R&D
- Large amount of key technologies validated in other projects by IHEP: BEPCII, HEPS, ...

CEPC R&D ~ 50% cost of acc. components	 > High efficiency klystron > 650MHz SRF cavities > Key components to e+ source > High performance Linac > Electrostatic Deflector > Cryogenic system 	 Novel magnets: Weak field dipole, dual aperture magnets Extremely fast injection/extraction Vacuum chamber tech. Survey & Alignment for ultra large Acc. MDI
BEPCII / HEPS ~ 40% cost of acc. components	 High precision magnet Stable magnet power source Vacuum chamber with NEG coating Instrumentation, Feedback system Traditional RF power source SRF cavities 	 Electron Source, traditional Linac Survey & Alignment Ultra stable mechanics Radiation protection Cryogenic system MDI

 $\sim 10\%$ missing items consist of anticipated challenges in the machine integration, commissioning etc. and the corresponding international contribution

✓ Specification Met

Prototype Manufactured

	Accelerator	Cost (billion CNY)	Ratio
\checkmark	Magnets	4.47	27.3%
<	Vacuum	3.00	18.3%
	RF power source	1.50	9.1%
\checkmark	Mechanics	1.24	7.6%
\checkmark	Magnet power supplies	1.14	7.0%
1	SCRF	1.16	7.1%
\checkmark	Cryogenics	1.06	6.5%
\checkmark	Linac and sources	0.91	5.5%
\checkmark	Instrumentation	0.87	5.3%
	Control	0.39	2.4%
	Survey and alignment	0.40	2.4%
<	Radiation protection	0.17	1.0%
	SC magnets	0.07	0.4%
✓	Damping ring	0.04	0.2%

Device	Accelerator	Quantity	CEPC specification	R&D status
1.3 GHz SRF cavity (9-cell)	Booster	96	$Q=3 \times 10^{10}$ @ 24 MV/m	Specification met
650 MHz SRF cavity (2-cell)	Collider	240	$Q=4\times 10^{10}@22~\mathrm{MV/m}$	Specification met
650 MHz	Collider	120	Efficiency: 80%	Prototype
klystron			Power: 800 kW	manufactured
C-band NC	Linac	292	Gradient: 45 MV/m	Prototype
accelerating tube				manufactured
S-band	Linac	35	Peak power gain: 7 dB	Prototype
bunch compressor				manufactured
Positron source	Linac	1	Central peak magnetic	Specification met
flux concentrator			field >6 T	
Dual-aperture	Collider	2384	Field: 140 Gs-560 Gs	Specification met
dipole magnet			aperture: 70 mm	
			length: 28.7 m; harmonic $< 5 \times 10^{-4}$	
			relative field difference<0.5%	
Dual-aperture	Collider	2392	Gradient: 3.2-12.8 T/m	Specification met
quadrupole magnet			length: 2 m; harmonic $< 5 \times 10^{-4}$	
			aperture: 76 mm	
			relative field difference<0.5%	
Weak field	Booster	16320	Field error	Specification met
dipole			$\leq 10^{-3}@60 { m ~Gs}$	
Electrostatic	Collider	32	Electric field: 2.0 MV/m	Specification met
separator			field uniformity: 5×10^{-4}	by prototype
			good field region: 46 mm*11 mm	
Cryogenic	Collider/	4	18 kW @ 4.5 K	Collaboration with
refrigerator	Booster			IPC CAS,
				a refrigerator system
				of 2.5 kW @ 4.5 K
				has been developed
Ceramic vacuum	Transport	~ 20	$75\times56\times5\times1200\mathrm{mm}$	Prototype
chamber and	lines			in production
coating				
MDI SCQ	Collider	8	Gradient: 136T/m; length: 2m	Prototype
			Aperture: 40mm; included angle: 33mrad	in manufacture
Visual instrument	All	11	Image accuracy: 5 μ m+(5 μ m/m)	Prototype completed
			horizontal angle: 1.8 arc-second	
			vertical angle: 2.2 arc-second	

Table 5.2: Summary of key technologies in engineering applications essential for CEPC

Device type	Accelerator	Quantity	CEPC specifications
S-band copper accelerating tube	Linac	111	$\sim 30 \text{ MV/m}$
vacuum chamber	Collider/	Total length	Length: 6 m
and coating	Booster	200 km	aperture: 56 mm
			vacuum: 3×10^{-10} Torr
			NEG coating pump speed for H_2 :
			0.5 L/s· cm ²
BPM and	All	~ 5000	Closed orbit
electronics			resolution: 0.6 µm
kicker & fast pulser	Transport	~ 25	Pulse width <10 ns (strip-line)
	line		trapezoidal pulse width <250 ns (slotted-pipe)
Lambertson septum	Transport line	~ 20	Septum thickness ≤3.5 mm (in-air)
			thickness ≤2 mm (in-vacuum)
Power supply	All	9294	Stability 100-1000 ppm
RF-shielded	Collider	24000	Contact force 125±25 g/finger
bellows	Booster	/12000	

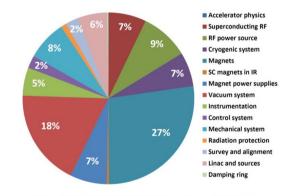
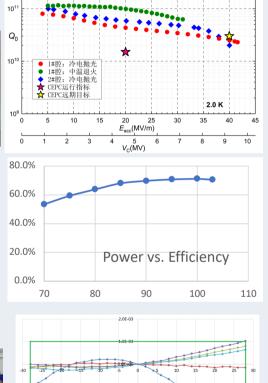
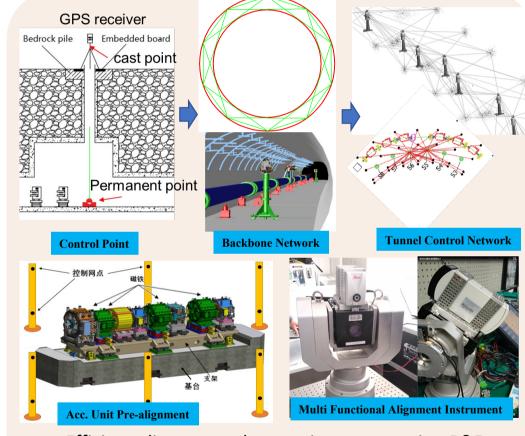


Figure 12.3: Cost breakdown of the CEPC accelerator technical systems.

25/8/23


State-of-the-art: Key Components


650MHz SRF cavity

Weak field dipole

4 OF-03

100km Acc. Alignment & Installation R&D

Efficient alignment scheme + instrumentation R&D to guarantee the installation within 4 years

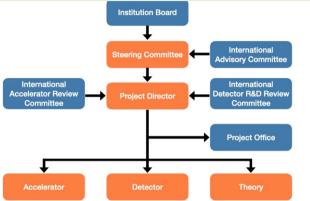
Extensive detector R&D benefitted from experience

- Silicon strip : Experience from ATLAS upgrade
- MDI, Drift chamber & SC magnet : Experience from BESIII

CEPC R&D on key technologies

- Silicon pixel, silicon tracker and TPC
- > PFA calorimeter

Prototypes under evaluation


> With international partners, all sub-detector covered

- > PFA calorimeter: with CALICE Collaboration
- > TPC: with LCTPC Collaboration
- Drift cham: with Italian colleague
- Silicon tracker: with UK/Germany/Italian colleague

Vertex detector R & D (3- 5 µm reso.)

Silicon vertex: with French/Spain colleague

	•	-				0.05
	Sub-detector	Specification	Requirement	World-class level	CEPC prototype	CEPC JadePix-1 0,04 Φ-16×16 μm ² 0 σ=(σ _m ² , σ _m ² =3.5 μm
	Pixel detector	Spatial resolution	$\sim 3 \mu { m m}$	$3-5 \ \mu m \ [12, 13]$	$3-5\mu{ m m}$ [14–16]	-→ 33×33 μm ² σ ₁ =(σ _{in1} σ _i =4.8 μm
	TPC/drift chamber	dE/dx (dN/dx) resolution	$\sim 2\%$	$\sim 4\%$ [17, 18]	~ 4% [19–21]	
					Prototype built	
	Scintillator-W	Energy resolution	$< 15\%/\sqrt{E({ m GeV})}$	12.5% [22]	to be measured	
	ECal	Granularity	$\sim 2 \times 2 \ {\rm cm}^2$		$0.5\times0.5~{\rm cm^2}$	
PF.	A calorimeter				Prototyping [25]	PFA scintillator-W ECAL 4D crystal ECAL
	4D crystal ECal	EM energy resolution	$\sim 3\%/\sqrt{E({ m GeV})}$	$2\%/\sqrt{E({ m GeV})}$ [23, 24]	$\sim 3\%/\sqrt{E({ m GeV})}$	PFA scintillator-W ECAL 4D crystal ECAL
		3D Granularity	$\sim 2 \times 2 \times 2 \mathrm{cm^3}$	N/A	$\sim 2\times 2\times 2~{\rm cm^3}$	
	Scintillator-Steel	Support PFA,			Prototyping	
	HCal	Single hadron σ_E^{had}	$< 60\%/\sqrt{E({ m GeV})}$	$57.6/\sqrt{E({ m GeV})}\%$ [26]		
	Scintillating	Support PFA			Prototyping	
	glass HCal	Single hadron σ_E^{had}	$\sim 40\%/\sqrt{E({ m GeV})}$	N/A	$\sim 40\%/\sqrt{E({ m GeV})}$	
	Low-mass	Magnet field strength	$2 \mathrm{T} - 3 \mathrm{T}$	1 T – 4 T [27–29]	Prototyping	
_	Solenoid magnet	Thickness	$< 150 \mathrm{~mm}$	$> 270 \mathrm{~mm}$		

- • Table 7.2: Team of Leading and core scientists of the CEPC
- Name Role in the CEPC team Brief introduction Yifang Wang Academician of the CAS, direc-The leader of CEPC, chair of the SC tor of IHEP Xinchou Lou Professor of IHEP Project manager, member of the SC Academician of the CAS, head Chair of the IB, member of the SC Yuanning Gao of physics school of PKU Jie Gao Professor of IHEP Convener of accelerator group, vice chair of the IB, member of the SC Professor of SJTU Haijun Yang Deputy project manager, member of er of detector group, mem Management team, Shan Jin Nu Xworld Class leading lember of the SC Member of the SC Convener of detector group Convener of detector group Convener of accelerator grou Chenghui Yu Professor of IHEP Convener of accelerator group Professor of IHEP Jingyu Tang Convener of accelerator group

Convener of theory group

Convener of theory group

Professor of SJTU

Professor of ITP

- Institution Board: 32 institutes, top universities/institutes in China •
- Management team: comprehensive management experience at construction projects of • BEPCII/CSNS/HEPS, and international projects of BESIII/Daya Bay/JUNO/...
- Accelerator team: fully over all disciplines with rich experiences at BEPCII, HEPS...
- Physics and Detector team: fully over all disciplines with rich experiences at BESIII, Daya Bay, JUNO, ATLAS, CMS, ...

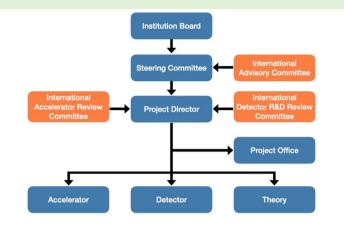

				Number	Sub-system	Conveners	Institutions	Team (senior staff)	
	Table 7.3: Team of the CEPC accelerator sy		Table 7.3: Team of the CEPC accelerator system		1	Pixel Vertex	Zhijun Liang, Qun Ouyang,	CCNU, IFAE, IHEP, NJU,	~ 40
Number	Number Sub-system Convener		Team (senior staff)		Detector	Xiangming Sun , Wei Wei	NWPU, SDU, Strasbourg,		
Tumber	-			2	Silicon	Harald Fox, Meng Wang,	IHEP, INFN, KIT, Lan-	~ 60	
1	Accelerator physics	Chenghui Yu, Yuan Zhang	18		Tracker	Hongbo Zhu	caster, Oxford, Queen Mary,		
2	Magnets	Wen Kang, Fusan Chen	12				RAL, SDU, Tsinghua, Bris-		
3	Cryogenic system	Rui Ge, Ruixiong Han	11				tol, Edinburgh, Livepool, USTC, Warwick, Sheffield,		
4	SC RF system	Jiyuan Zhai, Peng Sha	12				ZJU,		
5	Beam Instrumentation	Yanfeng Sui, Junhui Yue	7	3	Gaseous de-	Franco Bedeschi, Zhi Deng,	CEA-Saclay, DESY,	~ 30	
6	SC magnets	Qingjin Xu	10		tector	Mingyi Dong, Huirong Qi	LCTPC Collab., IHEP,		
-			+ ~300 de	+	tor	ctoffe o	INFN, NIKHEF, THU .		
7	Power supply aC	BELEVELO	+ 300 de	IEC	Itaine	Std 15 C	uprenuy	~ 10	
8	njection & extraction	Jinhui Chen	1	Э	Calorimetry	Roberto Ferrari, Jianbei Liu,	CALICE Collab., IHEP,	~ 40	
9	Mechanical system	Jimli Wang Lan Dog 🗖 🗍	C/BESIII/J			Haijun Yong, Yong Liu	INFN, SJTU, USTC		
10	Vacuum system	Haiyi Dong, Yongsneng wla	C/ DESIII/J		1111111111111	Xiaolong Wang	DI HERAFA ST	~ 20	
11	Control system	Ge lei, Gang Li	6	7	Plysics	Manqi Ruan, Yaquan Fang,	IHEP, FDU, SJTU,	~ 80	
12	Linac injector	Jingyi Li, Jingru Zhang		ove	a	Liantao Wang, Mingshui			
13	Radiation protection	Zhongjian Ma	3		Software	Chen Shengseng Sun, Weidong	IHEP, SDU, FDU,	~ 20	
	Sum		117	0	Sonware	Li, Xingtao Huang	IEF, 5D0, FD0,	~ 20	
	Sum					Sum		~ 300	
						buin		500	

Table 7.4: Team of the CEPC detector system

iStep@ZJU

Xiaogang He

Jianping Ma

Name	Affiliation	Country
Tatsuya Nakada	EPFL	Japan
Steinar Stapnes	CERN	Norway
Rohini Godbole	CHEP, Bangalore	India
Michelangelo Mangano	CERN	Switzerland
Michael Davier	LAL	France
Lucie Linssen	CERN	Holland
Luciano Maiani	U. Rome	San Marino
Joe Lykken	Fermilab	U.S.
lan Shipsey	Oxford/DESY	U.K.
Hitoshi Murayama	IPMU/UC Berkeley	Japan
Geoffrey Taylor	U. Melbourne	Australia
Eugene Levichev	BINP	Russia
David Gross	UC Santa Barbara	U.S.
Brian Foster	Oxford	U.K
Marcel Demarteau	ORNL	USA
Barry Barish	Caltech	USA
Maria Enrica Biagini	INFN Frascati	Italy
Yuan-Hann Chang	IPAS	Taiwan, China
Akira Yamamoto	КЕК	Japan
Hongwei Zhao	Institute of Modern Physics, CAS	China
Andrew Cohen	University of Science and Techbnology	Hong Kong, China
Karl Jakobs	University of Freiburg/CERN	Germany
Beate Heinemann	DESY	Germany

International Accelerator Review Committee

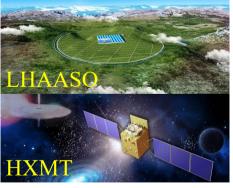
- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/University of Hamburg & Oxford University
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentang Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

International Detector R&D Review Committee

•	Jim Brau, USA, Oregon
•	Valter Bonvicini, Italy, Trieste

- Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- Liang Han, China, USTC
- Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
 Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Koberio Tenchini, Italy, INFIN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku

IAC: global renowned scientists and top laboratory or project leaders who have ample experience in project management, planning, and execution of strategies, **operating since 2015**


IARC & IDRC: leading experts of this field, provide guide to the project director

- IHEP is one of the few institution in the world that
 - has rich management experience and successful constructed many large scientific facilities
 - has a full coverage of all technical disciplines for accelerators and detectors, in particular for the design and construction of circular e+e-collider(BEPCII) and the detector(BESIII)
 - has all needed infrastructure for the construction of large facilities
 - has successfully hosted international projects such as BESIII, Daya Bay, JUNO, LHAASO, etc.

• CEPC is committed by IHEP and workplan endorsed by CAS

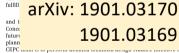
International collaboration

CEPC attracts significant International participation

- Conceptual design report: 1143 authors from 221 institutes (including 140 International Institutes)
- More than 20 MoUs signed and executed
- Intensive collaboration on Physics studies
- Oversea scientists made substantial contributions to the R&D, especially the detector system
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS: Next one at Marseille
- Annual working month at HKIAS (since 2015)

International influence

CEPC Input to the ESPP 2018 - Physics and Detector


CEPC Physics-Detector Study Group

Abstract

The Higgs boson discovered in 2012 by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC), plays a central role in the Standard Model. Measuring its properties precisely will advance our understandings of some of the most important questions in particle physics, such as the naturalness of the electroweak scale and the nature of the electroweak phase transition. The Higgs boson could also be a window for exploring new physics, such as dark matter and its associated dark sector, heavy sterile neutrino, et al. The Circular Electron Positron Collider (CEPC), proposed by the Chinese High Energy community in 2012, is designed to run at a center-of-mass energy of 240 GeV as a Higgs factory. With about one million Higgs bosons produced, many of the major Higgs boson couplings can be measured with precisions about one order of magnitude better than those achievable at the High Luminosity-LHC. The CEPC is also designed to run at the Z-pole and the W pair production threshold creating close to one trillion Z hosons and 100 million W . bosons. It is electrowea

observables I irements are **ESPPU** input complementa C also offers excellent opj s, W, and Z hosons. The tau lentons produced from the decays of the Z bosons are interesting for flavor physics. The

clean collision environment also makes the CEPC an ideal facility to perform precision OCD measurements. Several detector concents have been proposed for epts can fulfill

collaboration would be crucial at this stage. This submission for consideration by the ESPP is part of our dedicated effort in seeking international collaboration and support. Given the importance of the precision Higgs boson measurements. the ongoing CEPC activities do not diminish our interests in participating in the international collaborations of other future electron-positron collider based Higgs factories

Snowmass2021 White Paper AF3- CEPC

CEPC Accelerator Study Group¹

1. Design Overview

1.1 Introduction and status

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in July 2012 raised new opportunities for large-scale accelerators. The Higgs boson is the heart of the Standard Model (SM), and is at the center of many biggest mysteries. such as the large hierarchy between the weak scale and the Planck scale, the nature of the electroweak phase transition, the original of mass, the nature of dark matter, the stability of vacuum, etc. and many other related questions. Precise measurements of the properties of the Higgs boson serve as probes of the underlying fundamental physics principles of the SM and beyond. Due to the modest Higgs boson mass of 125 GeV, it is possible to produce it in the relatively clean environment of a circular electron-positron collider with high luminosity, new technologies, low cost, and reduced power consumption. In September 2012, Chinese scientists proposed a 240 GeV Circular Electron Positron Collider (CEPC), serving two large detectors for Higgs studies and other tonics as shown in Fig. 1. The -100 km tunnel for such a machine 1 energies well bevo

Snowmass input The (hosted by China. It the ICFA Workshop "Accelerators for a Higgs Factory: Linear vs. Circular" (HF2012) in November 2012 at Fermilab. A Preliminary Conceptual Design Report (Pre-CDR, the White R 1 (the Yellow I arXiv: 2203.09451 made. T) [3] has been internati 018

2205.08553 ergy Physics 'DP CEPC a CEPC International Advisory Committee (IAC). In TDR phase, CEPC optimization design with higher performance compared with CDR and the key technologies such as 650MHz high power and high efficiency klystron, high quality SRF accelerator technology, high precision magnets for booster and collider rings, vacuum system. MDI, etc. have been carried out, and the CEPC accelerator TDR will be completed at

¹ Correspondance: J. Gao, Institute of High Energy Physics, CAS, Chin Email: gaoj@ihep.ac.cn

CEPC provides critical input to ESPPU & Snowmass as a major player

In May

potential

il in the

o outline

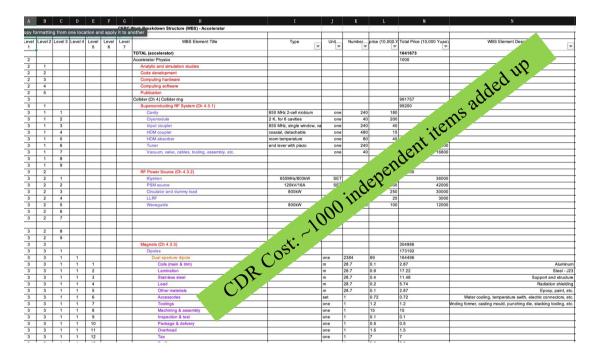
rihe the

n for the

• Team member actively participated International study(ESPPU and Snowmass committees) and Panel discussions

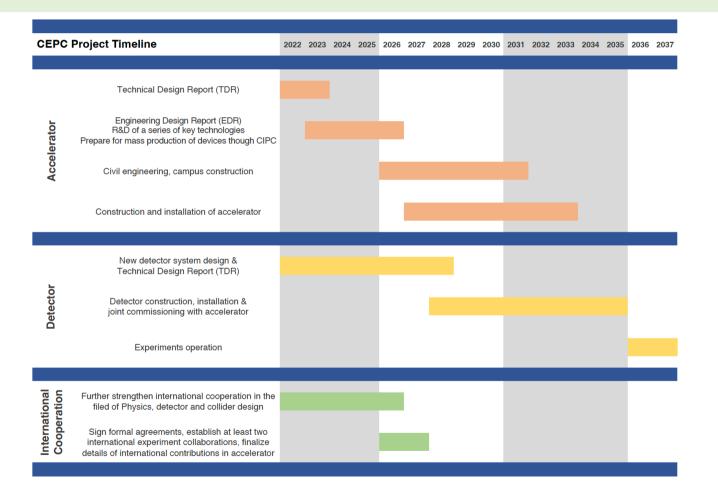
CEPC attracts intensive international collaboration, ensuring that the CEPC design and technology are among the most advanced in the world. once approved, CEPC is expected to be substantially supported by international community.

Industrial engagement


- CIPC, established in 2017, composed of ~ 70 high tech. enterprises, covers Superconducting materials, Superconducting cavities, cryomodules, cryogenics, Klystrons, electronics, power source, vacuum, civil engineering, etc. CIPC actively joins the Key technology R&D and prepares for the mass production for the CEPC construction.
- CEPC study group is **surveying main international suppliers.**
- CEPC strongly promote these relevant technology development (cost-benefit).

iStep@ZJU

25/8/23


Budgets for R&D and construction, and the timeline

Cost estimation of the CEPC (CDR)					
Tier I	Tier II	Amount (100 M CNY)			
	Collider	99.2			
Accelerator	Booster	39.2			
	Linac and sources	9.1			
	Damping ring	0.44			
	Common: Cryogenics	10.6			
	Survey & alignment	4			
	Radiation protection	1.7			
Conventional facilities	-	102			
Detectors	-	40			
γ -ray beam lines	-	3			
Project management (1%)	-	3			
Contingency (15%)	-	46			
Total	-	358			

- Cost estimated with two indpendent methods, agrees at 10% level
- CEPC design relies on well studied, or mature tech. reducing uncertainties on Cost estimation
- Cost estimation for TDR phase is progress: no major change

Budgets for R&D and construction, and the timeline

CEPC Accelerator TDR International Review

- An international review meeting was hosted at Hongkong University of Science and Technology during 12-16.June.2023
- The physics design and key technology R&D status were reviewed.

Summary

CEPC

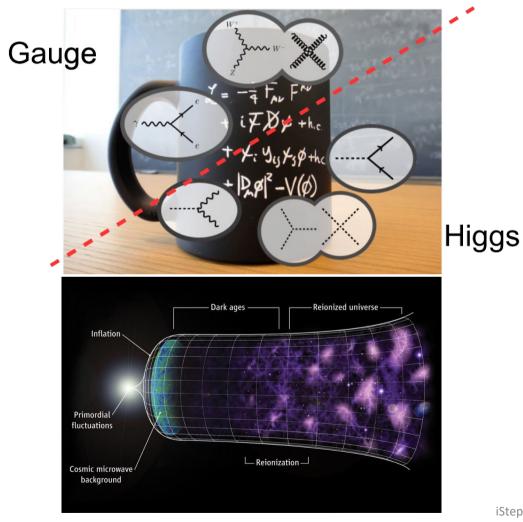
- will address most pressing & critical science problems
- adds enormous strategic values; has many advantages; will be in a leading position if realized.
- design-technologies reaching maturity; offers great upgrade options and many added values and benefits
- has a strong-experienced team, IHEP support and international cooperation, which are keys to bring CEPC to fruition
- schedule follows China's 5-year planning; expects to complete R&D and preparation to build the facility and carry out the science program
- will position China to be a leading position in particle physics and contribute to the world in a major way.

Back up

Scientific objectives, significance, and strategic value

- CEPC, as a global high energy physics facility, will not only be a flagship of particle physics, but also of the global science. It can promote China to a leading position in the international community of particle physics.
 - Science: a major player in fundamental science & innovation, with significant contributions to the mankind
 - Technology: promote the technology not only for China, but also for the world
 - International Cooperation: host thousands of world-class talents for cooperative innovation, enhance the international cooperation, and may contribute to the World Peace.
 - Education & Training: train talents with international experience
 - Economics: cultivate high-tech enterprises; boost local economy with a science center

Outline


Brief introduction to CEPC Scientific objectives, significance, and strategic value Key scientific and technological issues Design of experimental facility and technical requirements Upgrade capability and added values Status and maturities of the CEPC technologies Core team, the host institution and the existing support Budgets for R&D and construction, and the timeline Summary

Budgets for R&D and construction

Cost and benefit analysis

- CEPC **is priceless** in revealing potential discoveries & knowledge. CEPC may provide the **Higgs data** in 2030s, thus brings upon mankind a new era in the science exploration.
- The current CEPC design is optimized. The cost is reduced through innovative design & new tech. development.
- CEPC will host **thousands of users and operates for decades**. The investment per researcher per year is comparable, or even smaller than that of other facilities & other disciplines.
- CEPC has the upgradable capability and provides **strong boost to the technologies**, is a highland for global talent training & **cooperative innovations**. It could revolutionize multiple key-tech. that has huge potential for application.
- CEPC attracts significant International collaboration, enhance the international communication, contribute to the World Peace.
- The science city of CEPC could strongly **promote** local **economic**.

Scientific objective: Higgs field & Challenges to the SM

- Hierarchy: From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Naturalness: Fine tuning of the Higgs mass
- Masses of Higgs and top quark: metastable of the vacuum
- Unification?
- Dark matter candidate?
- Not sufficient CP Violation for Matter & Antimatter asymmetry
- Most issues related to Higgs

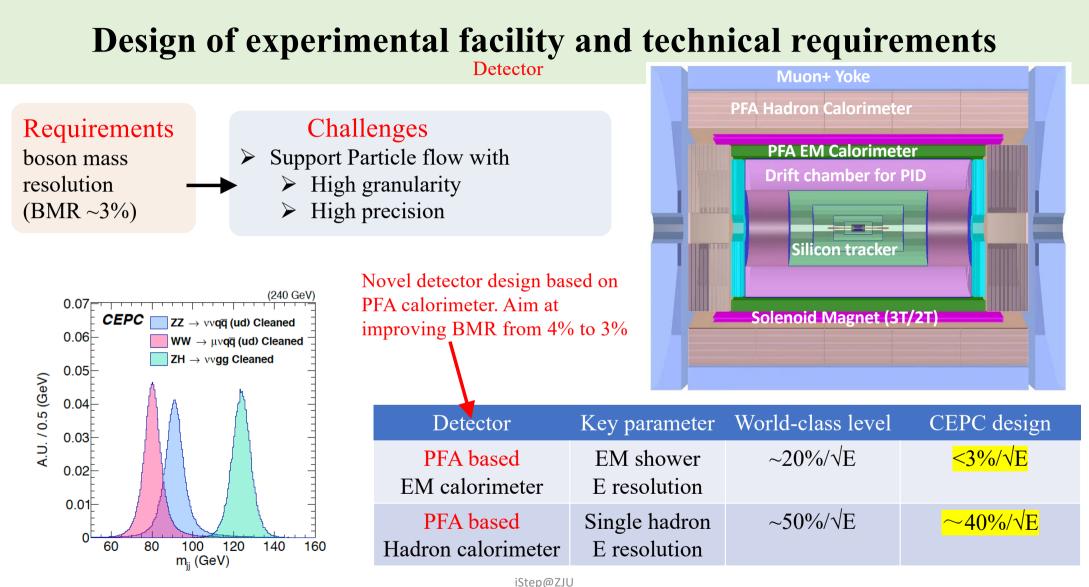

CEPC Measurement Precision

Table 2.1: Precision of the main parameters of interests and observables at CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC projections of

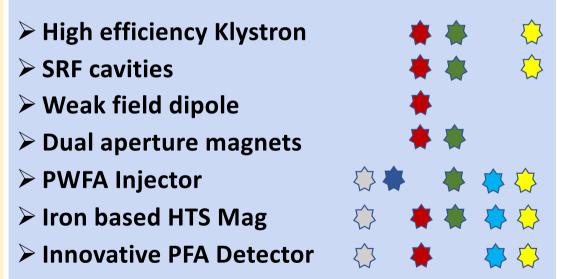
Higgs			W, Z, and top		
Observable	HL-LHC projections	CEPC precision	Observable	Current precision	CEPC precision
M_H	20 MeV	3 MeV	M_W	9 MeV	0.5 MeV
Γ_H	20%	1.7%	Γ_W	49 MeV	2 MeV
$\sigma(ZH)$	4.2%	0.26%	M _{top}	760 MeV	$\mathcal{O}(10)$ MeV
$B(H \rightarrow bb)$	4.4%	0.14%	M_Z	2.1 MeV	0.1 MeV
$B(H \to cc)$	-	2.0%	Γ_Z	2.3 MeV	0.025 MeV
$B(H \to gg)$	-	0.81%	R_b	3×10^{-3}	2×10^{-4}
$B(H \to WW^*)$	2.8%	0.53%	R_c	1.7×10^{-2}	1×10^{-3}
$B(H \to ZZ^*)$	2.9%	4.2%	R_{μ}	2×10^{-3}	1×10^{-4}
$B(H\to\tau^+\tau^-)$	2.9%	0.42%	R_{τ}	1.7×10^{-2}	1×10^{-4}
$B(H\to\gamma\gamma)$	2.6%	3.0%	A_{μ}	1.5×10^{-2}	3.5×10^{-5}
$B(H \to \mu^+ \mu^-)$	8.2%	6.4%	A_{τ}	4.3×10^{-3}	7×10^{-5}
$B(H \to Z\gamma)$	20%	8.5%	A_b	2×10^{-2}	2×10^{-4}
B upper $(H \rightarrow inv.)$	2.5%	0.07%	N_{ν}	2.5×10^{-3}	2×10^{-4}

 3000 fb^{-1} data [2] are used for comparison

Accelerator	Cost (billion CNY)	Ratio	CEPC R&D	BEPCII /HEPS
Magnets	4.47	27.3%	20.0%	7.0%
Vacuum	3.00	18.3%	10.0%	8.0%
RF power source	1.50	9.1%	5.0%	2.0%
Mechanics	1.24	7.6%	N.A	6.6%
Magnet power supplies	1.14	7.0%	0.5%	6.5%
SCRF	1.16	7.1%	5.1%	2.0%
Cryogenics	1.06	6.5%	3.0%	2.5%
Linac and sources	0.91	5.5%	2.0%	2.5%
Instrumentation	0.87	5.3%	2.3%	3.0%
Control	0.39	2.4%	0.1%	0.5%
Survey and alignment	0.40	2.4%	1.4%	1.0%
Radiation protection	0.17	1.0%	0.1%	0.2%
SC magnets	0.07	0.4%	0.2%	0.1%
Damping ring	0.04	0.2%	N.A.	N.A.
Total			49.7%	41.9%

8578/23

Design of experimental facility and technical requirements


CEPC: innovative design & key technologies R&D at the leading position of international future colliders.

Conceptual Innovation	Upgradable Capability	State-of- the-art Tech.	Green & Cost Saving	Revolutionary Principle	Spillover	

- > 100km circular collider
- Partial/Full double ring
- Switchable energies H/W/Z
- One tunnel for

booster/collider and SppC

