Top quark Physics

Hongbo Liao Institute of High Energy Physics, CAS, China

23/08/2023 ISTEP 2023 @ Zhejiang University

- ✓ Amazing amount of experimental and theoretical work over 100 yrs
- ✓ Mathematical description of the fundamental building blocks: Matter (quarks, leptons) Forces (gauge bosons)
- ✓ Very accurate predictions for many experimental setups we can think of
- ✓ Development "guided" by the idea of unifying forces, ultimately one force, e.g. electroweak unification

Top Quark - a Special Fundamental Particle

 \checkmark Top is the heaviest fundamental particle discovered so far

 $\rightarrow \lambda_t \sim 1$ only m_t is natural mass

Special role in EW symmetry breaking ?

From Theorised to Discovered

top quark was expected to be discovered soon

The Charm and Bottom quark:

	mass	discovery	
Charm quark	~1.5GeV	J/ψ-> cc	
Bottom quark	~5.0GeV	Ƴ->bb¯	
	$b/c = \sim 3$	Bound state	
3, 15, 35, 63,			
O 101	找规律	找规律填数。	
0 121			
0 99	10,14,22,38,70,134,262,()。		
98			

Two suggestions (Naive thoughts) :

- 1. The top quark might be about three times as heavy as the b quark ~15GeV
- 2. Expected a bound ttbar state, with a mass of around **30 GeV**.

The race began!

Searches in e⁺e⁻ collider I

✓ PETRA (DESY in Germany), late of 1970's

- 1. Bound ttbar state were produced \rightarrow narrow resonance
- 2. Without forming a bound state \rightarrow Higher rate of producing hadrons

$$R \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_f Q_f^2$$

3. If top quarks decay, the angular distribution of decay products is more spherical than that of light quarks

The absence of such signatures => top mass > 23 GeV

Searches in e⁺e⁻ collider II

- ✓ TRSTAN (KEK in Japan), early of 1980's
 - -- Built to study the top quark
 - -- Similar techniques employed at PETRA

\Box Negative results => top mass > 30 GeV

Japan's particle collider bites the dust 7 9 9 6 6 6 6

10 March 1990

By Michael Cross

THE FLAGSHIP of Japanese science, a particle collider known as TRISTAN,

1981:开始建造, 1986:建成(30 GeV e+e-) 1990:改造为同步辐射加速器

Searches in e⁺e⁻ collider III

1989 -- 1990

✓ SLC : Stanford Linear Collider at SLAC in US

✓ LEP : Large electron-position collider at CERN in Europe

 \Box searched for Z -> t t

 \square negative results => top mass > 45 GeV

✓ In the SM various Electroweak observables depend on the mass of the top quark

Searches in Hadron Collider I

✓ SppS: super proton-antiproton synchrotron ✓ CERN, \sqrt{s} =540 GeV, built to observe W,Z

 $\square Searched for e + \ge 2 jets or \mu + \ge 2 jets$

Z candidate event

- ► By 1985, 12 events were observed at UA1
- Expected background 1.6 events
- Expected signal 10 events (Mtop = 40 GeV)
- Concluded that it's consistent with a 30-50 GeV top quark.

Stopped before claiming discovery =>W + jets background was underestimated

Searches in Hadron Collider II

- ✓ 1988, UA1 at SppS
- ✓ larger data sample
- \checkmark Improved understanding of the background
- ✓ Fake leptons, W+jets, DY, J/Y, bbar/ccbar

<u>channel</u>	observed	expected background
μ + \geq 2 jets	10 events	11.5 ± 1.5 events
$e + \ge 1$ jets	26 events	23.4 ± 2.8 events
	(+ 23 expected if M	$t_{\rm top} = 40 {\rm GeV}$
	Conclude Mtop	o > 44 GeV

Tevatron (at Fermilab in US) joins the hunt

✓ 1988-89: at CERN, UA2 remains after the upgrades
 ✓ √1.8 TeV@Fermilab vs. √0.63 TeV@CERN

Tevatron

Proton-antiproton collision at 1.8-2.0 TeV

12 countries, 62 institutions 767 physicists

CDF

1976 开始研发 1981 完成设计 1982 开始建造 1986 开始取数

1981 提议实验 1984 完成设计 1991 建造完成 1992 开始取数

DØ Detector

Searches in Hadron Collider III

CDF: Start from the hypothesis that Mtop = 40 - 80 GeV

- ✓ ev + ≥ 2 jets or e μ + ≥ 2 jets
- ✓ Dominant background: W (on-shell) + jets
- ✓ While in signal W is off-shell
- ✓ Discriminant: ev transverse mass
- ✓ In 1991, Conclude Mtop > 77 GeV

UA2@SppS: uses similar technique as CDF

✓ In 1990, Conclude Mtop>69 GeV

□ Start to change the searching strategy

- $\checkmark Mtop > Mb + Mw$
- ✓ W bosons in both background and signal are on-shell
- \checkmark Not use MT (lv) as discriminant anymore, add b-tagging
- ✓ Search in dilepton channels and single lepton channels
- Dilepton: include ee, μμ, eμ (require missing ET, Z-veto)
 Single lepton: require low pT muon (semi-leptonic b-decays)

In 1992, Conclude Mtop > 91 GeV

Searches at CDF and D0

✓ 1992: D0 started data taking

- ✓ Tevatron with higher luminosity during 1992--1995
 - D0 : excellent calorimetry, large solid angle and coverageCDF: precision vertex detector, good tracker, magnetic spectrometer

D0: optimized search for Mtop =100 GeV at run1A evt bkg

- $-e\mu+\geq 1jet+MET 1$ 1.1
- $-ee+\geq 1jet+MET 1 0.5$
- $-e+\geq 4jets+MET 1 2.7$
- $-\mu +\geq 4jets + MET 0$ 1.6

⇒ Mtop>131 GeV

Searches in Hadron Collider IV

✓ Two b-tagging methods

- Top events contain B hadrons
- Few W+jets events contain heavy flavor

more complicated, high efficient more simpler, less efficient (efficiency ~60%) (efficiency ~15%)

✓ In 1993, report excess of events, but not significant (2.8 sigma)

Туре	observed	background	
DIL	2 events	0.56+0.25	3 common even
SVX	6 tags	2.3 ± 0.3	
SLT	7 tags	3.1 ± 0.3	f
total	12 events		

First Evidence (1994)

Evidence for Top Quark Production in $\bar{p}p$ Collisions at $\sqrt{s} = 1.8$ TeV

We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV with an integrated luminosity of 19.3 pb⁻¹. We find 12 events consistent with either two W bosons, or a W boson and at least one b jet. The probability that the measured yield is consistent with the background is 0.26%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $(74 \pm 10 \pm 1)^{\frac{3}{2}}$ GeV/c². The $t\bar{t}$ production cross section is measured to be $(3.9 \pm 6.1)^{\frac{1}{2}}$ pb

First Observation (1995)

\Box CDF: **4.8** σ by using 67/pb data

Channel:	SVX	SLT	Dilepton
observed	27 tags	23 tags	6 events
expected background	6.7 ± 2.1	15.4 ± 2.0	1.3 ± 0.3
background probability	2×10^{-5}	6×10^{-2}	3×10^{-3}

 $M_t = 176 \pm 8 \pm 10 \text{ GeV}$ $\sigma_{t\bar{t}} = 6.8^{+3.6}_{-2.4} \text{ pb}$

 \square D0: **4.6** σ by using 50/pb data

- Dilepton/single lepton (mu b-tagging)
- ✓ Observed: 17

✓ Expected background: 3.8±0.6

 $M_t = 199^{+19}_{-21} \pm 22 \text{ GeV}$ $\sigma_{t\bar{t}} = 6.4 \pm 2.2 \text{ pb}$

CDF and D0 papers submitted simultaneously PRL 74(1995) 2626-2631 PRL 74(1995) 2632-2637

Milestones of Top Quark Discovery

Year	Collider	Particles	References	Limit on $m_{\rm t}$
1979-84	PETRA (DESY)	e^+e^-	[50]-[63]	$> 23.3 \text{GeV/c}^2 \square$
1987 - 90	TRISTAN (KEK)	e^+e^-	[64] - [68]	$> 30.2 \text{GeV/c}^2$
1989 - 90	SLC (SLAC), LEP (CERN)	e^+e^-	[69] - [72]	$> 45.8 {\rm GeV/c^2}$
1984	$Sp\bar{p}S$ (CERN)	$p\bar{p}$	[75]	$> 45.0 \text{GeV/c}^2 \checkmark$
1990	$Sp\bar{p}S$ (CERN)	$p\bar{p}$	[76, 77]	$> 69 \mathrm{GeV/c^2}$
1991	TEVATRON (FNAL)	$par{p}$	[78] - [80]	$> 77 \text{GeV/c}^2$
1992	TEVATRON (FNAL)	$par{p}$	[81, 82]	$> 91 \text{GeV/c}^2 \checkmark \checkmark$
1994	TEVATRON (FNAL)	$par{p}$	[84, 85]	$> 131 \text{GeV/c}^2$ V
Mass in GeV/c 1 GeV/c ² = 1.8 · 10 ⁻²⁷ charr up c 0.005 • 0.01 down stran		kg n 1.5 0.15 ge	top 173 5.0	
			bottom	

✓ It was not discovered until 1995

- ✓ Mainly due to its large mass \sim 173 proton mass.
- ✓ The heaviest fundamental particle discovered so far!

Things We Learn from Top Quark Discovery

\checkmark We need faith and patience.

- □ Long journey from late of 1970's to 1995.
- Nothing found --- narrow down searching range (set limit) --- wrong conclusions --- optimize --- evidence --- discovery --- cross check

✓ We need right machines.

- □ High enough energy to produce such heavy particles.
- High enough luminosity to produce enough events.

\checkmark We need right searching strategies.

- □ Sensitive channels --- large signal and small background
- Powerful discriminants between signal and background
- Accurate estimates of background

What do we study for top quarks?

Production and Decays

□ Top quarks (mostly) produced in pair

Top Pair Branching Fractions

Where?

- 周长27公里,横跨瑞士-法国边境
- •世界上最大、能量最高的对撞机 —— 粒子物理研究的最前沿

2

How?

The past...

- Full Run II provides about
- ~ 120M tt pairs
- ~ 30M single top
- ~ 120k ttZ, tZ
- $\sim 30k \text{ ttH}$

Selection of top quark events

✓ Trigger:

- single or double (isolated) lepton

- ✓ Leptons:
- $-e/\mu$, pt>20/30 GeV, |eta|<2.5
- $\ Identification/reconstruction$
- Tracker/calorimeter isolation

- ✓ Jets:
- at least 2 jets, pT>30 GeV, |eta|<2.5
- anti-kT algorithm, with cone 0.4-0.5
- b-tagging is optional
- ✓ Missing transverse energy:
- Typically require 30-40 GeV

Cross section measurement

Top pair production

Inclusive top pair cross sections

✓ Measured in all channels (0/1/2L)
 ✓ Measured at all energies (2, 5, 7, 8, 13, 13.6TeV)
 ✓ Agreement with SM at unprecedented precision

First look at LHC run-3 data!

✓Very first measurements of inclusive ttbar cross section at 13.6 TeV by CMS:..

- ML fit to bins in # of leptons / lepton flavors / # of (b-)jets
- In-situ calibrations of lepton, JES, b-tag efficiencies.

$$\sigma(t\bar{t}) = 887^{+43}_{-41 \text{ (stat+syst)}} \pm 53_{\text{ (lumi)}} \text{ pb}$$

Theory:
$$\sigma(t\bar{t}) = 921^{+18}_{-16} \text{ pb}$$

Source	Uncertainty (%)
Lepton ID efficiencies	1.6
Trigger efficiency	0.3
JES	0.7
b tagging efficiency	1.1
Pileup reweighting	0.5
ME scale, $t\bar{t}$	0.6
ME scale, backgrounds	0.1
ME/PS matching	0.1
PS scales	0.3
PDF and $\alpha_{\rm S}$	0.3
Single t background	1.0
Z+jets background	0.3
W+jets background	0.0
Diboson background	0.5
QCD multijet background	d 0.3
Statistical uncertainty	0.5
Combined uncertainty	2.6
Integrated luminosity	2.3

arXiv:2303.10680 Submitted to JHEP

Differential cross section

- ✓ Cross sections measured as a function of pT, eta, invariant mass of the final state leptons, top quarks, ttbar system, etc.
- \checkmark Good agreement with expectations

Cross section in the R measurement

Single top production

Single top production

JHEP 06 (2023) 191 Single top cross section JHEP 07 (2023) 046

s-channel

Observed at Tevaton

 \checkmark

Very complicated at LHC:

Inclusive and differential XS in eµ channel

tW channel

- --small cross section, large backgrounds
- Matrix Element technique to separate S/B

- $\sigma_{\rm meas.} = 8.2 \pm 0.6 \; ({\rm stat.}\,)^{+3.4}_{-2.8} \; ({\rm syst.}\,) \; {\rm pb}$
- Compatible with SM prediction:

Significance 3.3 (3.9) obs.(exp)

dominated by modelling and JES

Source	$\Delta \sigma / \sigma$ [%]
$t\bar{t}$ normalisation	+24/-17
Jet energy resolution	+18/-12
Jet energy scale	+18/-13
Other s-channel modelling sources	+18/-8
	/

10% uncertainty

In agreement with predictions

- tW is also measured in single lepton channel by ATLAS (8 TeV) and CMS (13 TeV)
- Less precise than dilepton
tt + X production

tty production

□ Precision 4%

JHEP 09 (2020) 049

□ Prediction from MG5aMC (LO+NLO k-factor) is lower

ttW measurement: CMS

ttW measurement: ATLAS

- ✓ Inclusive cross section measurements for tfW, tfW+/–, and the ratio;
- ✓ Differential measurements for 9 kinematic observables; compatibility with data is tested by $\chi 2$.

✓ Larger than prediction.

tt+X summary

More works on ttW.....

t + X production

tZq production

Precision is expected to improve with more statistics in Run 3

t+X summary

4-top production

4-top searches

- \checkmark Very rare production in SM
- ✓ Heaviest particle final state
- ✓ Many different final states
- Sensitivity to the top quark
 Yukawa coupling
- Important input to effective field theory interpretations

Evidences from both experiments!

Observation of 4-top productions: CMS

- ✓ Re-analyze/re-optimize the analysis of full Run-2 data in same-sign 2ℓ, 3ℓ, 4ℓ channels.
- ✓ Simultaneous binned profile likelihood fit to signal & control regions to extract the signal strength.

arXiv:2305.13439✓Significance: 5.5σ (obs) / 4.9σ (exp)Submitted to PLB✓Slightly larger than prediction, but still compatible.

Observation of 4-top productions: ATLAS

- ✓ Same-sign 2ℓ & 3ℓ, ≥6 jets, ≥2 b-jets.
- ✓ Graph Neural Network (GNN) trained to separate signal from background.
- ✓ Signal extraction by simultaneous fits to GNN scores in signal and control regions

4-tops summary

ATLAS+CMS Preliminary		√s = 13 TeV, June 2023		
$\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5} \text{ (scale) fb} \qquad \sigma_{t\bar{t}t\bar{t}} = 13.4^{+1.0}_{-1.8} \text{ (scale+PDF) fb} \qquad tot. stat.$ $JHEP 02 (2018) 031 \qquad arXiv:2212.03259$ $NLO(QCD+EW) \qquad NLO(QCD+EW)+NLL'$				
		$\sigma_{t\bar{t}t\bar{t}}^{}\pm$ tot. (± stat. ± syst.)	Obs. Sig.	
ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118	₩ 	26 ⁺¹⁷ ₋₁₅ (±8 ⁺¹⁵ ₋₁₃) fb	1.9 σ	
ATLAS, comb., 139 fb⁻¹ JHEP 11 (2021) 118	⊧ , ▼ ; 1	24 ⁺⁷ ₋₆ (±4 ⁺⁵ ₋₄) fb	4.7 σ	
CMS, 1L/2LOS/all-had, 138 fb ⁻¹ arXiv:2303.03864	▶ ∔ ● ↓ 4	36 ⁺¹² ₋₁₁ (±7 ⁺¹⁰ ₋₈) fb	3.9 σ	
CMS, comb., 138 fb⁻¹ arXiv:2303.03864	H H	17±5 (±4 ±3) fb	4.0 σ	
ATLAS, 2LSS/3L, 140 fb⁻¹ arXiv:2303.15061	P ; ■ ; 1	22.5 ^{+6.6} _{-5.5} (^{+4.7 +4.6} _{-4.3 -3.4}) fb	6.1 σ	
CMS, 2LSS/3L, 138 fb ⁻¹ arXiv:2305.13439	₽-●-₩	17.7 $^{+4.4}_{-4.0} \left(^{+3.7}_{-3.5} ^{+2.3}_{-1.9}\right) \text{fb}$	5.6 σ	
	20 40			
0	20 40	$\sigma_{t\bar{t}t\bar{t}}$ [fb]	0 120	

Top quark properties

- ✓ Now at LHC is possible to reach un-precedent precisions for the property measurements
- \checkmark Now measured not only in ttbar but also in single top and tt+X events

Top mass Top spin Top polarisation Asymmetries B-fragmentation Color reconnection CP properties

.

Top mass

Direct measurements from reconstruct invariant mass of top quark decay products

Indirect measurements from observable directly sensitive to top mass (e.g. cross section)

Theoretical advances needed

CMS measurements

✓tt I+jets: profile LH fit to 5 observables in different event categories

✓ Most precise measurement with 0.37 GeV uncertainty

t-channel single top: ML fit to $\zeta = \ln(m_t/1 \text{ GeV})$

$$m_{t} = 172.13^{+0.76}_{-0.77} \text{ GeV}$$

$$R_{m_{t}} = \frac{m_{\bar{t}}}{m_{t}} = 0.9952^{+0.0079}_{-0.0104}$$

$$\Delta m_{t} = m_{t} - m_{\bar{t}} = 0.83^{+1.79}_{-1.35} \text{ GeV}$$
JHEP 12 (2021) 161

ATLAS measurements

Template method

•DNN to select b/lepton pairings

•Select permutation with highest DNN score

Top mass using soft muon tag

- Invariant mass m_{lµ} sensitive to mt
- reduced sensitivity to JES
- •sensitive to fragmentation modelling

- \checkmark consistent at 2σ level with previous results
- Ttbar modelling is the largest challenge for future measurements
- Require input from theory and experiments

ATLAS-CONF-2022-058

JHEP 06 (2023) 019

Top mass from boosted jet mass

✓ XCone exclusive algorithm to reconstruct jets and sub-jets
 → improved resolution

 Dedicated calibration of FSR using substructure variables, and dedicated jet mass calibration

✓ Comparable precision to direct measurements

W polarization in top events

✓ Probe of Wtb vertex New method in dilepton channel: mesure absolute and normalised differential distributions in $\cos \theta^*$

arXiv:2209.14903

Energy asymmetry in tt

EPJC 82 (2022) 374

✓ Asymmetry between the energies of top and anti-top

Measured in tt+j events in boosted regime

$$A_E(\theta_j) \equiv \frac{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) - \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) + \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}$$

Angle between the jet and z-axis Effect increases with jet pT

 $\sigma^{\text{opt}}(\theta_j) = \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi - \theta_j | y_{t\bar{t}j} < 0)$

Tool to search for new physics:

- Many BSM models are expected to involve top quarks. Possible to perform direct searches for new resonances and FCNC
- ✓ Use the precise measurements to set a limit on new operators in an EFT framework

CP violation in ttbar

✓ Construct 4 CP-sensitive observables $A_{CP} = \frac{N(O_i > 0) - N(O_i < 0)}{N(O_i > 0) + N(O_i < 0)}$, ✓ Define and measure asymmetry

Flavor Changing Neutral Currents

FCNC: top couples to light quarks (u/c) and neutral bosons (γ ,Z,H,g)

- \checkmark Forbidden at tree level in SM
- ✓ Very small rates predicted
- \checkmark Deviations would give hint for NP

Process	\mathbf{SM}	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \rightarrow Zu$	7×10^{-17}		-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \rightarrow Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to g u$	4×10^{-14}		-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t ightarrow \gamma u$	4×10^{-16}			$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t \rightarrow \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \rightarrow hu$	2×10^{-17}	6×10^{-6}	1222	$\leq 10^{-5}$	$\leq 10^{-9}$	622
$t \rightarrow hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Searches for FCNC

JHEP 02 (2022) 169

arXiv:2208.11415

arXiv:2205.02537

Improved limit by factors 3.3 to
 5.4 from previous analysis

Coupling	BR limits [10 ⁻⁵] Expected Observed		
$t \rightarrow u\gamma LH$	0.88+0.37	0.85	
$t \rightarrow u\gamma \mathrm{RH}$	$1.20^{+0.50}_{-0.33}$	1.22	
$t \rightarrow c \gamma \text{LH}$	$3.40^{+1.35}_{-0.95}$	4.16	
$t \rightarrow c \gamma \operatorname{RH}$	$3.70^{+1.47}_{-1.03}$	4.46	

	$\mathcal{B}(t \to Z q)$	$[10^{-5}]$
tZu	LH	6.2
tZu	RH	6.6
tZc	LH	13
tZc	RH	12

Improved limit by factors 3 to 5 from previous analysis

Improved limit by x2 from 8 TeV analysis

$$\mathcal{B}(t \to u + g) < 0.61 \times 10^{-4}$$

$$\mathcal{B}(t \to c + g) < 3.7 \times 10^{-1}$$

Large impact from systematics

$$\begin{array}{l} \mathcal{B}(t \rightarrow uH), < 0.94 \times 10^{-3} \\ \mathcal{B}(t \rightarrow cH) < 0.69 \times 10^{-3} \\ \mathcal{B}(t \rightarrow cH), < 0.79 \times 10^{-3} \\ \mathcal{B}(t \rightarrow cH) \\ \mathcal{B}(t \rightarrow cH), < 0.94 \times 10^{-3} \\ \mathcal{B}(t \rightarrow cH), < 0.19 \times 10^{-3} \\ \mathcal{B}(t \rightarrow cH), < 0.73 \times 10^{-3} \\ \mathcal{B}(t \rightarrow cH) \\ \mathcal{B}(t \rightarrow cH)$$

 All searches except tgq are statistically limited

gained sensitivity by including regions sensitive to couplings in top production and decay

Charged Lepton Flavor Violation (CLFV)

✓ Search for CLFV in trilepton channel
✓ BDT for signal extraction

In agreement with expected

CMS TOP-22-005

Dark Matter + top

Dark Matter JHEP 03 (2019) 141 35.9 fb⁻¹ (13 TeV) Events 10000 Data Z(II) + jet CMS Signature: ttbar+MET DM mediater + jets 🗾 W(lv) + jets Z(yy)1u, 2 b tag, SR t+X Fit unc. Top-tagging categorization VV. VH 8 لاووووووو m_=100 Ge\ ✓ Signal events at large MET ϕ/a g QDDDDDD JHEP 03(2019)141 Bkg

Search for DM + ttbar(\rightarrow l+jets,all hadr.)

- \checkmark Shape of MET distribution

Direct DM production

φ/a

Pseudo-scalar particles alter the m(tt) with a wiggle

200

250

300

 $_{g}$ mm

 $_g$ uuu

450

500

p_T^{miss} (GeV)

Vector-like quarks + top

- ✓ Predicted in many BSM models, aim to solve the hierarchy problem
 - in multiplets: singlet, doublet, triplet
 - left- and right-handed component with same quantum numbers
- $\checkmark\,$ VLQs can mix with SM quarks and modify the couplings to the Z/W/Higgs
- ✓ Search for VLQ single and pair production
 - Most searches assume VLQs couple/decay to SM particles (bosons and B2G quarks)
- \checkmark Busy events, a lot of top quarks, bottom quarks, leptons and jets in final state
- Example: 2 tops in final state, look for resolved/merged top quark decays
- use top/H/W/Z taggers to find hadronic decays

SUSY + Top

- \checkmark SUSY is one plausible extension of the SM
- ✓ Due to the heavy top quark, mass splitting between 2 stops can be large, such that the lighter stop can be even lighter than the top quark
- $\checkmark\,$ Decays dictated by mass spectrum of other SUSY particles

New friends for the top ?

Run3 started!

CMS-PAS-TOP-22-012

Top at HL-LHC

Very forward top (LHCb): access to high-x PDF, essential to understand potential signs for new heavy states FCNC: expect improvements

HL-LHC

- 14 TeV \rightarrow not a bump-hunt machine
- 3-4 ab-1
- 140-200 Pileup

Huge yield (in terms of approx. top units)

- 3B ttbar events
- 300M tW
- 30M s-channel
- 3M ttV
- 30k 4 top

Unprecedented challenges for detectors and reconstruction

- Radiation
- Occupancy
- Particle density

Only seen 5% of the LHC data

Exploit multi-process analyses

ttgamma:

4top: improvement up to ~11% possible, constraints on 4-fermion operators

Top at CEPC

CEPC will be a versatile machine with many opportunities

- ✓ Higgs factory @~240 GeV
- ✓ Diboson factory @~160 GeV
- ✓ Z factory @~90 GeV

@~360 GeV it can also be a playground for Top precision measurements, Higgs complementary measurements and also BSM searches

Top Mass at CEPC

- ee-colliders provide not only the top reconstruction method but also the tt threshold scan
- The scan is made against \sqrt{s} and crosssection is the direct observable
- This brings measurements of top mass and a bunch of other parameters
 - Top width
 - Top Yukawa coupling
 - α_S

\sqrt{s} (GeV)	Δm_{top}	$\Delta \Gamma_{top}$	$\Delta \alpha_S$	
342.75	9 MeV	343 MeV	0.00041	
344.00	> 50 MeV	26 MeV	0.00047	
343.50	15 MeV	40 MeV	0.00040	
In the table, 342.75 GeV, 344.00 GeV and 343.50 GeV are optimal energy points for top quark mass, width and α_S , respectively				

Eur. Phys. J. C (2023) 83:269

PKU + IHEP

Top electroweak couplings at CEPC

- \checkmark Set constraints on new physics scale
- ✓ Very sensitive to BSM Physics
- ✓ Test of composite Higgs models

At the CEPC, the ttV (V = γ , Z) couplings could be probed directly through the top pair production process⁶

The energy and the angular distributions of the decay products, in particular, the charged lepton and the b-quark,... are powerful tools to disentangle and access different components of the ttZ and ttγ.

In progress NJU + IHEP

 $Z, \gamma *$

e
Summary I

 \checkmark Top is the heaviest fundamental particle discovered so far

✓ ATLAS and CMS provided many results with full Run2 dataset:

- High precision measurements
- Searching for very rare processes
- Measuring the top properties and couplings
- Setting constraints to new physics

✓ The very first look of the Run-3 data gives the results at the highest CM energy in record!

 ✓ So far, all measurements of top quark showed good agreement with SM predictions

Summary II

- ✓ What can we learn from Run2?
 - Theoretical advancements are still necessary to improve simulation and to understand / reduce uncertainties
 - Machine learning has significant role in top physics!
- ✓ What do we expect for Run3?
 - Statistical limited Measurements and searches will be improved
 - More data will allow for reaching higher region (pT or masses) sensitive to BSM
 - Advanced algorithms will enhance the sensitivity:
 - -Higgs, multi-top, boosted objects, SUSY, Dark matter, etc.

More results with more data are coming.....

As the future: 3B ttbar at HL-LHC and XX ttbar at CEPC

基本粒子的发现(加速器)

1932 Cockcroft-Walton直线质子加速器 1929 Lawrence 回旋加速器 1939 Lawrence 回旋加速质子至100 MeV 1950 Berkeley 质子6.3 GeV 1953 Brookhaven 3.3 GeV质子 同步加速器 1954.9.29 11个西欧国家批准成立CERN 1959 CERN 26 GeV 质子同步加速器 1962 Stanford建造直线电子加速器(20 GeV) 1967达到设计指标=>深度非弹,结构函数, 1973 夸克"登台亮相"(渐进自由发现) 1974 丁肇中(Brookhaven) Richter(SLAC)发现J/ψ(十一月革命) 1977 Martin Perl(SLAC) 发现 r 1977 Lederman在费米实验室(E288)发现Y (b-夸克) 1983.1 鲁比亚(CERN SPS UA1/UA2) 发现W 1983.6 UA1发现Z

1960-70's

- ✓ 1968 FNAL开始建造LINAC
- ✓ 1973-1979 Tevatron对撞机研发 ✓ 1976 提议改建为对撞机
- ✓ 1976 开始研发CDF探测器

1980's

- ✓ 1981 CDF 概念设计完成
- ✓ 1981 提议D0实验
- ✓ 1982.7.1 开始建造CDF
- ✓ 1983 FNAL建成Tevatron
- ✓ 1984.11 D0实验设计完成
- ✓ 1986.11.30 1.8 TeV pp 对撞
- ✓ 1989 CDF 开始 Run 1升级

✓ 1978.6.29 UA1实验获批

✓ 1971.2.19 CERN开始建造SPS

- ✓ 1981.7.10 SPS 第一次pp 对撞, √s = 540 GeV
- ✓ 1983.1.25,UA1发现W(新闻发布)
- ✓ 1984.10.17, Carlo Rubbia, Simon van der Meer获诺奖
- ✓ 1981 LEP 立项
- ✓ 1983.9.13 LEP破土动工
- ✓ 1988.2.8 LEP隧道竣工
- ✓ 1989.8.13 LEP开始对撞(Ecm = 91 GeV)
- ✓ 1981 KEK建造TRISTAN对撞机

✓ 1989 KEK关闭TRISTAN对撞机

<u>1990's</u>

- ✓ 1991 D0建造完成
- ✓ 1992.2 D0安装完成
- ✓ 1992.5 D0开始取数
- ✓ 1995 CDF/D0 发现顶夸克

2000's

- ✓ 2001 Tevatron Run 2
- ✓ 2009.11 LHC √s = 900 GeV pp 对撞

2010's

2010.2 LHC 7 TeV pp对撞 2011.9.30 Tevatron 停机 2011 CMS/ATLAS 取得 5/fb 对撞数据 2012 CMS/ATLAS取得20/fb 对撞数据 2012.7.2 CDF/D0 发布希格斯粒子迹象 2012.7.4 CERN新闻发布:CMS/ATLAS发现希格斯粒子

- ✓ 1995.10 LHC完成设计报告
- ✓ 1999.5 LEP质心能量达到192 GeV
- ✓ 2000 LEP质心能量达到200 GeV
- ✓ 2000.11.2 LEP 关机

2010.2 LHC 7 TeV pp对撞 2011.9.30 Tevatron 停机 2011 CMS/ATLAS 取得 5/fb 对撞数据 2012 CMS/ATLAS取得20/fb 对撞数据 2012.7.2 CDF/D0 发布希格斯粒子迹象 2012.7.4 CERN新闻发布:CMS/ATLAS发现希格斯粒子

tqy production

arXiv:2302.01283 Submitted to PRL

Largest background from tty

Parton level cross section: Particle level cross section ✓ First evidence from CMS using ~36/fb of data
✓ New ATLAS analysis with full run 2 data

Signal regions (NN)

~40% higher that prediction

 $\sigma(tq\gamma) \mathcal{B}(t \to \ell \nu b) = 580 \pm 19(\text{stat.}) \pm 63(\text{syst.})\text{fb}$ $\sigma(tq\gamma) \mathcal{B}(t \to \ell \nu b) + \sigma(t \to \ell \nu b \gamma)q = 287 \pm 8(\text{stat.})^{+32}_{-31}(\text{syst.})\text{fb}$

Compatible with the SM within $2.5(1.9)\sigma$ at parton(particle) level

EPJC 81 (2021) 737

ttZ measurements

Channel	$\mu_{t\bar{t}Z}$
Trilepton	$1.17 \pm 0.07 \text{ (stat.)} ^{+0.12}_{-0.11} \text{ (syst.)}$
Tetralepton	1.21 ± 0.15 (stat.) $^{+0.11}_{-0.10}$ (syst.)
Combination $(3\ell + 4\ell)$	$1.19 \pm 0.06 (\text{stat.}) \pm 0.10 (\text{syst.})$

- ✓ Precision 10%
- \checkmark Slightly higher than prediction

Measurement of ttZ(bb) and ttH(bb) in boosted regime arXiv:2208.12837

ATLAS measured inclusive ttbar, fiducial Z boson cross-sections, and the ratio at 13.6 TeV

- Limited by the preliminary luminosity, but cancelled for the ratio!
- Measured values are consistent with the SM prediction using the PDF4LHC21 PDF set.

$$\sigma(t\bar{t}) = 859 \pm 4_{\text{(stat)}} \pm 22_{\text{(syst)}} \pm 19_{\text{(lumi)}} \text{ pb}$$

 $R_{t\bar{t}/Z} = 1.144 \pm 0.006_{\text{(stat)}} \pm 0.022_{\text{(syst)}} \pm 0.003_{\text{(lumi)}}$

ATLAS-CONF-2023-006