One-hour Lecture on Standard Model Measurements

Yusheng Wu (吴雨生)

wuyusheng@ustc.edu.cn

University of Science and Technology of China

iSTEP 2023 @ Zhejiang University

Outline

Concept & methodology

Review of current status

To briefly reveal how do we exactly measure the smallest scale physics

Disclaimer:

- \rightarrow Materials most relevant to LHC experiments
- \rightarrow A good digest of previous lectures assumed
- \rightarrow Focus given to introductory materials
- \rightarrow Frequently pick up figures/results from ATLAS experiment for lecturing
- → Difficulty of material selection due to mixture of audience, can always contact me via email for discussions

Concept & methodology

Physics Scales at the LHC

LHC experiments scrutinize physics at <u>QCD, EW, and</u> <u>up to TeV scales</u>

Measurements (indirect searches)

=> optimized phase space for precision test of the SM

Direct searches

=> optimized phase space for searching for BSM signals of particular types

Been carried out in a vast variety of final states and phase spaces

As of today, no clear sign of BSM was found from collider studies

Expedition will continue with up to ultimate O(1000) fb⁻¹ of data

LHC, ATLAS and CMS

Two general-purpose detectors with excellent performance and broad physics potentials:

Higgs and other SM measurements, direct search for new physics at EW and TeV scales, ...

From collisions to physics

< 10⁻¹⁰ s Collision and shortrange interactions: Hard-scattering, parton-shower, and hadronization 10⁻¹⁰ – 10⁻⁷ s Final-state particles interact with detector and generate electronic signals

10⁻⁶ s – 10⁰ s Trigger decision (L1:μs, High-level: ms - s) and Data acquisition

> 1s
Post-processing of data: calibration & reconstruction (1s – 1 min), distribution over network, and physics studies

A sketch of collision events

Offline computing

Workflows

Data flow: detector response, triggering, DAQ, physics object reconstruction and calibration, data taking and distributing

Prediction flow: physics process modelling, detector simulation, physics object corrections

Standard Model Production Cross Section Measurements

Physics analysis (data, predictions), statistical methods \rightarrow physics results

Objects for Physics

Examples of Physics Objects

Predictions

Parton-level

Parton-level generators (PDF \otimes Perturbative scattering amplitudes)

iSTEP - Y. Wu

Parton showering / hadronization

QCD radiation along the accelerated colored partons

Reach critical QCD scale, confinement dominates, colorneutral parton pairs hadronize

perturbative QCD calculable, approximately implemented, accounting well for collinear radiations

non-perturbative, implemented by phenological models, parameterization required

Showering

String model (Pythia)

Cluster model (Herwig)

Hadronization

To model a real event

Parton-level generator:

- Precise determination of final state kinematics a given order
- Limited order for extra radiations
- Shower generator
- Efficient simulation of QCD radiations (unlimited order)
- Tuning needed to be precise

Generator purpose generator: Matching and merging the two! Key is to resolve the overlapped phase space

Up to NNLO+PS for the time being

istep - y. Wu

Not cover electroweak calculation in this lecture
 ⇒ Importance for high pT physics, where EW corrections become sizable

Many programs on the market, often need to compare several to make sure a good understanding of the process

Detector Simulation

ATLAS detector simulation is based on *Geant4*, plus detector signal amplification and collection with analytical functions

the large-scale experiment

>1 mins per event Dominated by calorimeter

Faster simulation also deployed by simplifying calo. simulation

Common interactions between particles and materials simulated:

- ionization, pair production, scattering, Bremsstrahlung, hadronic interactions

Measurement Channels

Note: this lecture doesn't cover topics related to Top, Higgs, soft QCD, and flavor physics

Measurements and Predictions

Cross-sections

200

m_{(GeV)

Detector

observables

100

1.21 fb⁻¹ (13.6 TeV)

Z + jets 📕 tt

Single t 🕴 Data

Diboson /// Uncertainty

300

×10² CMS

eµ channel

8

GeV 9

20

Events /

pred.

Data / Data /

1.0 🕍

Quantum field structures, symmetries and intrinsic properties, model parameters

interactions

Couplings,

Measurement Methodology

2023 Aug.

Detector response

A schematic view of detector effects

True event happened

Backgrounds Detector inefficiency and smearing

Reconstruction from the detector signals

Physics studies try to remove the detector effects and "see" the core physics process (differential cross-sections, parameters, etc.)

Cross-section and Phase spaces

$$\sigma(x) = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \times A \times C \times B}$$

 $\sigma(x)$: to be measured cross-section or physics parameter

N_{obs}, N_{bkg}: number of observed data events and estimated background events

 \mathcal{L} : integrated luminosity of the data

A: signal acceptanceC: reconstruction efficiencyB: branching fraction of process to final states

To have a precise measurement of σ or x (physics goal), requirements for all the terms

- ✓ Large datasets
- ✓ Optimized selection for S/B ratio
- ✓ Stable estimation of backgrounds
- ✓ Good calibration of simulation

Likelihood

Practically, interpretation of physics results are usually done with **likelihood functions**

"Unfold" the truth

Differential measurement "unfolding"

Reconstructed distribution: R(x)

efficiency

$$R(x) = M(x, x') \times \epsilon(x') \times T(x')$$

Detector smearing matrix

To deal with instability of matrix inversion: iterative Bayes, singular value decomposition ...

iSTEP - Y. Wu

(Brief) Review of current status

Data processing and Reconstruction

Per-mil to percentage precision achieved in many

iSTEP - Y. Wu

Tremendous efforts from LHC, detector teams to make the data collection smooth, and available for measurements

Orders of Measurements

PrecisionTop mass precision (< 0.5 GeV) - new record</th>W mass (16 MeV), $sin^2 \theta_{eff}$ (1.5‰) approaching records2-3% unc. for W/Z/ $t\bar{t}$ inclusive σ , focus on multi-dim. differentialLepton universality τ -µ (1%) - new record

Top & EW

Charge, forward-backward asymmetries, polarization, spin-correlation

Measurement

- Diboson σ precision (5%)
- Single top σ precision (t-channel 7%, Wt 10%, evidence for s-chn.)
- VBF V, tt+ γ /W/Z σ precision (5-20%)
- Record precision in studying threebody vertices
- → high energy behavior of anomalous triple-boson couplings;
 CKM |V_{tb}| (5%)

Exploration

Observation of rare VBS processes (WW, WZ, ZZ, W γ), $\gamma\gamma \rightarrow$ WW, tZq, tri-bosons Evidence for rare four-top, VBS Z γ processes

Sensitivity in four-body vertices

Searched for rare decays, top FCNCs

19 free parameters

or 26 parameters (including neutrino sector with masses)

Parameters	Relative Error (PDG)
α , $\sin^2 \theta_w$, α_S	10 ⁻¹⁰ , 10 ⁻⁴ , 10 ⁻²
$m_W~(m_Z),m_H$	10 ⁻⁴ (10 ⁻⁵), 10 ⁻³
m_u, m_d, m_s	10 ⁻¹ , 10 ⁻¹ , 10 ⁻¹
$m_e, m_\mu, m_ au$	10 ⁻¹⁰ , 10 ⁻⁸ , 10 ⁻⁴
m_c, m_b, m_t	10 ⁻² , 10 ⁻² , 10 ⁻²
CKM 3 mixing angles & 1 CP-violating phase	10 ⁻⁴ - 10 ⁻²
Strong CP violating phase	< 10 ⁻⁹

Those sensitive for EW & TeV scale colliders to measure are marked in red

Measuring these parameters at different exp. offers

- stringent test of SM internal consistency
- high sensitivity to new physics
- probe of running nature of fundamental couplings

Example of other particles in loops that impact W boson propagator and its mass

SM Parameter Measurement

2023 Aug.

iSTEP - Y. Wu

W mass Measurement

ATLAS-CONF-2023-004

Better consistency with electroweak fit prediction

FUTURE:

more precise, independent measurements from ATLAS, CMS, LHCb will be desired (in view of discrepancies w.r.t. CDF results) → more precise calibrations, better pT modelling, better PDF modelling (more relevant PDF measurements at the LHC)

More on W mass

Per-mil level understanding of a distribution needed to reveal O(10) MeV mass shifts

Lengthy estimation of uncertainty effects

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
$m_{\rm T}, W^+, e-\mu$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\rm T}, W^-, e$ - μ	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\mathrm{T}}, W^{\pm}, e$ - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^+, e$ - μ	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\mathrm{T}}^{\ell}, W^{-}, e$ - μ	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\ell}, W^{\pm},$ $e extsf{-}\mu$	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
m_{T} - p_{T}^{ℓ} , W^+ , e	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
m_{T} - $p_{\mathrm{T}}^{\hat{\ell}}, W^{-}, e$	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
m_{T} - $p_{\mathrm{T}}^{\hat{\ell}},W^{\pm},e$	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T}^{-}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
m_{T} - p_{T}^{ℓ} , W^{+} , μ	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
m_{T} - $p_{\mathrm{T}}^{\hat{\ell}},W^{-},\mu$	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - p_{T}^{ℓ} , W^{\pm} , μ	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
$m_{\rm T}$ - $p_{\rm T}^\ell$, W^+ , e - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
m_{T} - p_{T}^{ℓ} , W^{-} , e - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Precision V measurements

Precision differential measurements of W or Z:

Parameter determination (e.g.,
 W mass and α_s); Understanding of QCD (V+jets); Search for new physics, study of Higgs physics, ...

arXiv:2205.04897

2023 Aug.

Measurement of strong coupling

 $\alpha_{s}(m_{z})$ determination global fit result Total HOH NNLO H NLO Top guark pair production `collider' Z pT collider' Collider Drell-Yan `collider' Fixed Target Drell-Yan Inclusive Jets "collider" Collider DIS (HERA) **Fixed Target neutrino DIS** Fixed Target charged lepton DIS 0.130 0.110 0.115 0.120 0.125 $\alpha_{s}(m_{z})$

PDF fit with collider results (e.g., inclusive jet) can give constraint to α_S (sensitivity from parton σ and DGLAP scaling)

Utilize the abundant productio n of jets and V+jets

Transverse energy-energy correlation (TEEC)

dated back to e+e-, to explore multi-jet FSR correlation affected by α_S

 α_S modifies the strength of ISR, and therefore affects $p_T(Z)$ $\Leftrightarrow p_T(Z)$ is one of most precisely measured distribution at LHC

Measurement of strong coupling

Multiboson Measurement

□ Study of multibosons - an essential piece in LHC physics program

Production σ : O(pb) - O(fb)Only precisely accessible at LHC

Electroweak Theory

Self-interactions due to Non-abelian Gauge Theory (diboson, triboson ...)

Electroweak Symmetry Breaking (H→VV, vector-boson-scattering)

- Precision test of the Standard Model
- Sensitive to new physics (SUSY, Little Higgs, Graviton, Dark Matter ...)

Multiboson Past \rightarrow Recent

First diboson measurements at ATLAS ("rediscovery" of electroweak theory)

- NLO QCD + shower simulation was new and sufficient to describe the data
- Many multiboson channels not/less explored in the past (LEP, Tevatron)

Differential *σ* with precision → Challenging NNLO QCD + NLO EW predictions ...

36

Example: diboson ZZ

Probe rare neutral Gauge interactions, and essential for Higgs precision physics: **ZZ to 4 leptons**

iSTEP - Y. Wu

Rare VBS processes

Involving Vector boson scattering

 \Rightarrow Probe of EWSB dynamics and sensitive to new physics in EWSB sector

 \Rightarrow Delicate cancellation needed to unitarize at TeV scale

 \Rightarrow Historically, one of main motivations for a Higgs boson!

⇒ Quartic gauge boson couplings (QGC) offer unique probe of SM gauge structures and sensitive to new physics modifications

Observations of VBS processes

Almost **ten years ago**, started with **same-sign WW pairs + jj** with a handful of signal events

VBF, VBS, and Triboson Cross Section Measurements Status: February 2022

All EW VVjj modes have been observed by now, start to study the differential distributions and constrain anomalous QGCs (aQGCs)

Effective Field Theory Studies

→ If new physics has a scale larger than accessible energy, the effect might be described in EFT, as new interactions at higher mass dimension

$$\mathcal{L} = \mathcal{L}^{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \sum_{j} \frac{f_j}{\Lambda^4} O_j$$

- → Commonly, there are dim-6 operators (with Wilson coefficients ci) and dim-8 operators (with coefficients fi)
- → Precise measurement of differential distributions help constrain those coefficients (deviation in kinematic shape)

Example on EFT studies from EW Zyjj

Detector distributions fitted to explore the modification from aQGCs (in the Effective Field Theory framework)

$$\mathcal{L} = \mathcal{L}^{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \sum_{j} \frac{f_j}{\Lambda^4} O_j$$

Sensitive to dim-8 Wilson coefficients, in particular those relating to neutral couplings

 $f_{M0}/\Lambda^4, f_{M1}/\Lambda^4, f_{M2}/\Lambda^4$ $f_{T0}/\Lambda^4, f_{T5}/\Lambda^4, f_{T8}/\Lambda^4$ and f_{T9}/Λ^4

Coefficients constraints w.r.t. cut-off scale (with unitarity bound displayed)

Best limits so far on T5-9 coefficients O(0.1) TeV⁻⁴

Events

Data/Pred.

Concluding

Briefly discussed the concept and ingredients of measurements at the LHC

A rough review of status of measurements and a few examples given

Outlook

- LHC is continuing to offer precision data, 3000 fb⁻¹ up to 2040; more measurements are expected
- Exploration of the smallest-scale physics and interactions are long-term theme: new directions, methodologies are anticipated
- Interplay with direct searches will continue