

A 128-channel FPGA-based multiphase sampling TDC for double-end readout RPC

Jiaxuan Li, Zhengwei Xue On behalf of USTC RPC lab

Outline

Motivation

Multi-phase clock sampling TDC

Performance of the TDC with the signal generator

TDC in a real RPC detector

Summary

Motivation

Mass RPC production @ USTC

- Large number of TDC channels
- ~1000 channels with PXI, which provides 14 PXI peripheral slots

Double-ends readout method

 $\mathbf{v}_{p} = \frac{v}{2} (T_{1} - T_{2}), \ \sigma_{p} = \frac{v}{2} \sqrt{\sigma_{T_{1}}^{2} + \sigma_{T_{2}}^{2}}$ $\mathbf{v}_{T} = \sigma_{p} < 2cm \text{ and } v \approx 20cm, \sigma_{T} < 140ps$ $\mathbf{v}_{T} = \sigma_{FEE} \oplus \sigma_{TDC} \oplus \sigma_{Avalanche} \oplus \sigma_{T_{transmission}}$

TDC design goals

- 128 channels
- $\sigma_{TDC} < 70 \ ps$
- Dead time < 20 ns
- Power dissipation $< 100 \ mW$

Commercial TDC	分辨率	通道数
V1290A	35ps	32
V1190A	80ps	128

Multi-phase clock sampling TDC

Theory

- Signal introduced to several flip-flops
- Generate equal-phase shift clocks by PLL structure
- Fine count by phase shift clocks after flip-flops

Characteristics

- Less resources occupancy
- Adjustable nonlinearity
- Bin width $\sim 100 \ ps$
- Small dead time

Conclusion

✓ Multi-phase clock sampling TDC ✓ Kintex-7: XC7K325T

Indicators	Requirements	Multi-phase clock sampling TDC
Channels	128	32~128
Time resolution (<i>ps</i>)	70	60~200
Dead time (<i>ns</i>)	20	Within 3 sampling clocks

TDC principle diagram

Input sample part

- Phase shift sampling clock
- 24 bit thermometer code

Analysis part

- 24 bit \rightarrow 5 bit fine count
- Analyze edges
- Store data based on trigger logic

Ethernet communication part

- Transfer the data to the total FIFO
- Gigabit Ethernet

Input sampling module

Constrain routes

- delay of signal to FF
- delay of sampling clock to FF
- 22 LUT, 24FF

Input LUT1 + LUT2 + LUT5 + LUT12 + FF2 LUT3 + LUT6 + LUT12 + LUT6 + LUT12 + LUT10 + LUT20 + FF24

Clock design

Device	Setup	Clock
 Highest VCO frequency: 1.44 <i>GHz</i> External crystal oscillator: 200 <i>MHz</i> 	 2 MMCM 12 phase-shift clocks Phase shift 15° 450 MHz Half of 24 FF in rising edge, other in falling edge 	 24 fine bins Bin width: 92.59 ps Coarse counter clock: 450 MHz

PCB design

Parts

- Two LVDS input
- Ethernet PHY chip
- FPGA core board using kintex-7
- FMC interface
- Level conversion
- LVDS32B、88E1111

Working condition

- Voltage: 5 V
- Current: 1.8 *A*~1.9 *A*
- Power dissipation: 70 mW/ch

Board size

• 233mm \times 160mm \times 20mm

Performance with the signal generator: nonlinearity

Test setup

- Dominated by fine counters
- Two pulse signals as trigger and stop
- Periods not correlated: 10µs and 23.14µs
- Average distribution

Test result

- Bin width: 0.9477~1.1262 *LSB*
- $DNL_{max} = INLmax = 0.1262 LSB$
- Deviation: within 18.59ps

Conclusion

- Secondary contribution to σ
- Convenient method: offline modification

$$\sigma = \sqrt{\frac{LSB^2}{12} + \sigma_{time}^2 + \sigma_c^2 + \frac{{\sigma_L}^2}{4}}$$

11/27/2021

Performance: time resolution

Test setup

- Two pulse signals as trigger and stop
- Delay: 70ns~7870ns at a step of 100 ns
- Standard deviation is the time resolution

Test results

- Without periodicity
- Dual-channel σ_1 : 45.3~57.1ps,
- Single-channel $\sigma_2 = \frac{\sigma_1}{\sqrt{2}}$: 32 ~ 40.4 ps

Conclusion

• Time resolution < 70 ps

Performance in a real RPC detector: setup

The structure of the cosmic ray test platform

Double-end readout system structure

The front end electrical (FEE) boards

11/27/2021

CLHCP 2021

Dark count

Test method

- Random trigger
- Time interval between dark count signal and trigger signal
- Average period of dark event: time constant of statistical distribution

Result

V _{th} (m∨)	10	20	25	30	35	40	45	50
Rate (Hz/m²)	1.5× 10 ⁶	74194	32848	1858	1529	1465	1024	402

- Dark count rate related with V_{th}
- Testing time interval by using TDC also can get the data of dark count rate

Efficiency curve

Test method

- External trigger mode
- Basic principle of conditional probability:

$$\begin{cases} p_1 = \frac{G_t \cap G_1 \cap G_2}{G_t \cap G_2} \\ p_2 = \frac{G_t \cap G_1 \cap G_2}{G_t \cap G_1} \end{cases}$$

- G_t: probability of trigger has output
- G₁: probability of RPC₁ has output
- G₂: probability of RPC₂ has output

Result

- p1 = 93.2% p2 = 95.3%
- There are many factors that affect efficiency
- The results only prove that TDC works normally

Calculate transmission speed

- Bakelite RPC with traditional readout method read signals from vertical strips
- Glass RPC with double-ends method read signal from horizontal strips
- Correlation between reconstructed hit position of the 2 gaps could be used for transmission speed calculation

u)emit 1.5

0.5

-0.5

-1.5

CLHCP 2021

Spatial resolution

Test method

- Distance between RPC₁ and RPC₂ small enough
- Hit position should be in same location
- Time difference between them follows normal distribution

$$\Delta t = \frac{T3 - T4}{2} - \frac{T1 - T2}{2}$$

Result

• Standard deviation: 131.9ps

•
$$p = \frac{v}{2}(T_1 - T_2), \ \sigma_p = \frac{v}{2}\sqrt{\sigma_{T_1}^2 + \sigma_{T_2}^2} = \frac{v}{\sqrt{2}}\sigma_T$$

• $\sigma_{space} = \frac{131.9 \times 21.47}{1000\sqrt{2}} \approx 2.00$ cm

The structure of the cosmic ray test platform

11/27/2021

CLHCP 2021

Summary

Index comparison:

✓ Satisfy the requirement of ATLAS Phase II Upgrade

Design goals	Test result
 128 channels 	 128 channels
• Time resolution < 70 p <i>s</i>	 Time resolution 28.1 ~ 52.3 ps
• Power dissipation $< 100 \ mW$	 Power dissipation 70 mW
• Spatial resolution $< 2cm$	• Spatial resolution $\sim 2cm$

Further work is ongoing

- Improve nonlinearity and time resolution
- Work with multiple TDC modules

Backup: dead time

Test method

- Two square wave
- 10000 events

Result

• f = 120MHz, dead time < 8.333ns

Conclusion

• Dead time < 20 ns

