

Search for dark matter in events with missing transverse momentum and a Higgs boson decaying to two photons

Jinfei Wu IHEP,CAS

The 7th CLHCP, Nov. 25-28, 2021

Introduction

Search for possible DM candidates in three simplified model Z'B, Z'-2HDM and 2HDM+a model.

> The diphoton channel is triggered by photon pair, allows much **lower** and **better resolved** E_T^{miss} and has **good resolution** and **small background**.

In the previous study, no significant deviation from the SM is observed.
Physics Letters B 775 (2017) 105–125

Wuif

Samples

- ➤ATLAS full Run-II data, 139 fb⁻¹, ~4 times than previous study.
- Signal MC sample, more details in backup
- **Ζ'Β** : $m_{Z'}$ in [10, 2000] GeV, m_{χ} in [1, 1000] GeV
- **Z'-2HDM :** $m_{Z'}$ in [400, 1600] GeV, m_A in [200, 600] GeV, m_{χ} =100GeV
- **2HDM+a** : $sin\theta$ scan, 2D scan on $m_A m_a$ and $tan\beta m_a$ plane
- Background samples
 - SM $H \rightarrow \gamma \gamma$: ggF, VBF, WH, ZH, $t\bar{t}$ H, tHqb and tWH
 - non-resonant $\gamma\gamma$, γ + jet, $V\gamma$ and $V\gamma\gamma$ (V=W,Z)

Object and event selection

Photon

- Tight identification criteria
- $P_T > 25 \text{GeV}$
- $|\eta| < 2.37$, excluding $1.37 < |\eta| < 1.52$
- Isolation requirement:
 - Topoetcone $\gamma 1/pT\gamma 1 < 0.065$
 - ptconeγ1/ pTγ1 < 0.05
- Remove electrons, muons and jets within ΔR=0.4 of photon.

MET

Both di-photon(NN) and hardest vertex are used.

Jets

- $P_T > 25 \text{GeV}$
- PFlow Jets, $|\eta| < 4.4$
- JVT < 0.5 for jets with pT < 60 GeV and |η| < 2.4
- Remove electrons and muons within ΔR = 0.420fijet/27

Leptons

- $P_T > 10 \text{GeV}$
- |η| < 2.47, excluding 1.37 < |η| < 1.52 for electron
- FCLoose(electron),PflowLoose_FixedRad(m uon)
- $|Z_0|sin\theta < 0.5mm$, $|d_0|/\sigma_{d_0} < 5.0(3.0)$ for electron (muon)
- Remove jets within $\Delta R=0.2$ of electron

Event selection

- Trigger selection: diphoton trigger, $P_{T,\gamma 1} > 35$ GeV, $P_{T,\gamma 2} > 25$ GeV
- pT $/m_{\gamma\gamma}$ > 0.35(0.25) for $\gamma_1(\gamma_2)$
- No leptons
- MET > 90 GeV
- $105 < m_{\gamma\gamma} < 160 \text{ GeV}$
- Δ MET < 30 GeV, MET(diphoton) MET(hardestvertex)

Control plots

Data and MC distributions of $pT\gamma\gamma$ and significance of MET, both photon requirements and event selection cuts applied .

Main backgrounds: non-resonant $\gamma\gamma$, γj .

Categorization

> Perform BDT categorization to the event passing pre-selection.

Input variables : pTγγ, significance of MET

Category	$E_{\rm T}^{\rm miss}$ requirement	BDT score range
High $E_{\rm T}^{\rm miss}$ BDT tight	$E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	0.950 < BDT score < 1
High $E_{\rm T}^{\rm miss}$ BDT loose	$E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	0.694 < BDT score < 0.950
Low $E_{\rm T}^{\rm miss}$ BDT tight	$E_{\rm T}^{\rm miss} < 150 {\rm ~GeV}$	0.864 < BDT score < 1
Low $E_{\rm T}^{\rm miss}$ BDT loose	$E_{\rm T}^{\rm miss} < 150~{\rm GeV}$	$0.386 < \mathrm{BDT}$ score < 0.864

Gain wrt cut-based selection up to 140 %, depending on specific model.

Signal and resonant background modelling

Double side crystal ball (DSCB) function for the BSM Higgs signal and SM Higgs background.

> Different BSM signal parameterizations for different models.

Non-resonant background modelling

 \succ The 2x2D sideband method is used to estimate the di-photon purities.

Purity	γ —jet	jet–jet	$\gamma\gamma$
Preselection	0.18 ± 0.03	0.01 ± 0.01	0.80 ± 0.03

- ➤ Use the purities to build the background template, scaled to the sideband of data, [105,120] ∪ [130,160] GeV
- Background fit function : perform S+B fit to the background-only MC template, measure the spurious signal.

Exponential function

	Category	$\Delta N_{ m sig}^{ m bkg\ model}$	$\Delta N_{\rm sig}^{\rm bkg \ model} / N_{\rm bkg}^{\rm non-res.}$ [%]	
	High $E_{\rm T}^{\rm miss}$ BDT tight	0.54	6.8	
	High $E_{\rm T}^{\rm miss}$ BDT loose	1.07	4.2	
	Low $E_{\rm T}^{\rm miss}$ BDT tight	0.62	6.3	
	Low $E_{\rm T}^{\rm miss}$ BDT loose	2.64	2.0	
2021/1	1/27	\\/if		

Systematic uncertainties

	Signals $[\%]$	Backgrounds [%]			
Source		SM Higgs boson	Non-resonant		
			background		
Experimental					
Luminosity	1.7	1.7			
Trigger efficiency	1.0	1.0			
Vertex selection (inclusive cat.)	0.01	0.01			
Photon energy scale	1.0	1.2			
Photon energy resolution	primer	tar 0.4			
Photon identification efficiency EX	pern	1.3			
Photon isolation efficiency	1.3	1.4			
AtlFastII simulation	2.0				
$E_{\rm T}^{\rm miss}$ reconstruction and jet uncertainty	2.8	1.7			
Pile-up reweighting	2.3	2.0			
Signal efficiency interpolation	< 13				
Non-resonant background modelling			6.8		
Theoretical					
Factorization and renormalization scale in migrat	ion 1.3	3.5			
$PDF + \alpha_s$ in migration	1.2	1.0			
Factorization and renormalization scale in cross s	ection retil	2.8 2.8			
PDF+ α_s in cross section Theorem 2.8					
Multi-parton interactions, ISR/FSR, hadronization	an 3.0	3.0			
$B(H \to \gamma \gamma)$	1.7	1.7			

- Uncertainties on the most sensitive category are shown.
- The dominate uncertainty is from the signal efficiency interpolation.
- An interpolation method is used to efficiently create new samples from existing fully simulated ones.

A summary of the experimental and theoretical uncertainties in terms of the relative impact on the number of events.

Statistic procedures

> A likelihood fit of the $m_{\gamma\gamma}$ distribution is used to derive the results.

$$\mathcal{L} = \prod_{c=1}^{4} \left(\text{Pois}(n_c | N_c(\theta)) \cdot \prod_{i=1}^{n_c} f_c(m_{\gamma\gamma}^i, \theta) \cdot G(\theta) \right)$$

Poisson item PDF of $m_{\gamma\gamma}$ Gaussian constraint of NPs
 $N_c(\theta) = \mu \cdot N_{\text{BSM},c}(\theta_{\text{yield}}) + N_{\text{Higgs},c}(\theta_{\text{yield}}) + \Delta N_{\text{sig},c}^{\text{bkg model}} \cdot \theta_{\text{sig},c}^{\text{bkg model}} + N_{\text{bkg},c}^{\text{non-res.}}$

Test statistic of upper limits(95%C.L.), based on the likelihood ratio approach.

$$\tilde{q}_{\mu} = \begin{cases} -2\ln\tilde{\lambda}(\mu) & \hat{\mu} \leq \mu \\ 0 & \hat{\mu} > \mu \end{cases} = \begin{cases} -2\ln\frac{L(\mu,\hat{\hat{\theta}}(\mu))}{L(0,\hat{\hat{\theta}}(0))} & \hat{\mu} < 0 \ , \\ -2\ln\frac{L(\mu,\hat{\hat{\theta}}(\mu))}{L(\hat{\mu},\hat{\theta})} & 0 \leq \hat{\mu} \leq \mu \ , \\ 0 & \hat{\mu} > \mu \ . \end{cases}$$

Results of 2HDM+a model

- > The data excludes a vast domain of possible mixing angle θ values.
- > The highest excluded m_A is 800 GeV for m_a = 110 GeV
- > The maximum excluded m_a reaches about 260 GeV for mA = 600 GeV.

Results of Z'B model

- > The limit extends up to 1150 GeV in mZ'.
- > The maximum limit on m_{χ} reachs 280 GeV, increases by more than 100 GeV.
- Extract the spin-independent DM-nucleon XS(90%C.L.), show the complementary result with direct search result.

Results of Z'-2HDM model

The maximum limit on m_A reaches 420 GeV for a Z' mass of $m_{Z'}$ = 825 GeV.

Summary

- A search for dark matter on **Z'B**, **Z'-2HDM** and **2HDM+a** model in the events with $H(\gamma\gamma) + MET$ with the 139 fb^{-1} data is presented in <u>JHEP10(2021)013</u>
- ≻Z'B
 - Limit of $m_{Z'}$ extends up to 1150 GeV, **150 GeV larger** than previous.
 - Limit of m_{χ} increases **more than 100 GeV** than before.
- >Z'-2HDM : Limit of m_A reaches to 420 GeV.

≻2HDM+a

- Excludes a vast domain of possible mixing angle θ values.
- Highest excluded m_A is 800 GeV for m_a = 110 GeV.

