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Introduction

Higgs: origin of mass & portal of new physics

Vacuum stability;
First-order phase transition;
e H|;| <1 New resonances;
Dark matter;

Boson

Exotic decay as a probe for new physics

o Portal coupling triggers exotic decay; See
SM Higgs Br 2% o2y 1312.4992 for a complete review.

* The SM Higgs width is extremely small: 4.07 MeV,
e Even a small portal coupling can have considerable
exotic decay branching ratio;

* For multiple BSM light particles, we might have
cascade decays.
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* Higgs exotic decay to multiple b-jets

The cascade decays via light scalars

* Might exist in models with dark sector consists of multiple dark scalars, see
hep-ph/0604261, 1009.3963 for examples;

b b 0 ez b
LS LS s
s\ \\:J’ L \\\‘/<
h->4b < h->6b TN h->8b S

ATLAS’s search for the 4b final state [1806.07355]

* Use the Wh and Zh production channels; target on multi-b final state

Dilepton

different-flavor

Dilepton

same-flavor

Single-lepton CR7 4 light

(3j, 2b) (4j, 2b) (=5j, 2b) (3j, 3b) (4j, 3b) (=5j, 3b) (4j, 4b)  (=5j, >4b)
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 This talk

The Wh channel with boosted region

q w ) 1 |epton

Use the machine learning
method to detect the Higgs jet

)

- h mmm) 1 fat jet containing 4, 6 or 8 b-jets

The selection cuts

* The fat jet: anti-k;, 200 GeV < p; < 500 GeV, 100 GeV < m, < 150 GeV,;
e The signal cross sections have assume a 100% branching ratio;

Cross section | Higgs exotic decay SM
[Unit: fb] |£Fv4b|LEv6b|LEv8b| W + jets tt W*h
Boosted £+ | 8.21 | 7.66 | 7.04 |2.53 x 10°(6.21 x 103 | 5.48
fat-jet 7.01 | 6.56 | 6.03 |2.01 x 10°[4.95 x 103 | 4.66
b-veto 6.17 | 5.80 | 5.35 [1.96 x 105 [2.17 x 103 | 4.07
Mass window | 3.34 | 3.19 | 2.99 |5.66 x 103 400 2.08
Efficiency [1.37%(1.36%(1.34% | 0.96% 0.25% |1.31%

Our goal: distinguish the Higgs jet from background QCD jets
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e Artificial

neural networks

A neuron
dendrite . Soma Axon terminal
H;Xj‘%] (cell body) OUtpUt

Input w
\)/\/ axon
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Direction electrical impulse travels -

A boiological neuron

A neural network

A bm@glcal
networky

Our wish

Weights; bias;
activation

1 Output
T2 f(w-2Z+0)

f: activation function
ajn tanh

An artificial neuron I
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1

output layer

hidden layer 1 hidden layer 2
An artificial neural network

input layer

* Input the kinematic information of the fat-jet constituents;
* Qutput the probability of a given jet to be Higgs candidate or QCD jet.

Ke-Pan Xie (¥{#1[H7), U of Nebraska-Lincoln



* Training artificial neural networks

The loss function

Label a Higgs jet withy=1,aQCD jet MPut  Weights; bias;
activation

with y = 0; 1 Output
For a given jet input, the output of the 2 f(- 2+ b)
network is a real number 0 < r<1; : o _
. . . . . f: activation function
For a given dataset with V mixing \
. . In :
signal and background jets: o M i
N An artificial neuron |°.. ,
1

The smaller L(w, b) is, the better the
network works.

QA
XX
«
e

XD
NS¢
b
&

‘ output layer
input layer

hidden layer 1 hidden layer 2
An artificial neural network
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* Training artificial neural networks

The loss function

Label a Higgs jet withy =1, a QCD jet
with y =0;

For a given jet input, the output of the
network is a real number 0 < r< 1;

For a given dataset with V mixing
signal and background jets:

The smaller L(w, b) is, the better the
network works.

Training the network

Varying (w, b) self-adaptively to find
the minimum of L(w, b).
Millions or even billions of parameters.

)
—_
(\)

FrrrrrrrreT I IIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIIII B
- An example for a well-

trained network

Signal

0.06/ Background

Normalized distribution
=)
o
T \-h TT

S
()
(\®)
H\‘\HHH
|

guum\uuum\\mumhmum\muu;
O'O%.O 02 04 06 08 10
The output r

Train the network on MC events, and apply it to the real data.
In pheno work: separate the MC events to two parts for training and testing
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* Applying to Higgs exotic decay

Variety based on our scenario

One signal channel at a time: 3 neural outputs, representing signal and two
backgrounds (W + jets, ttbar); ro + ry + r, = 1, probability interpretation.

Cross section | Higgs exotic decay SM
[Unit: fb] [£Fv4b|£Ev6b|4E08b| W + jets tt W*h
Boosted £+ | 8.21 | 7.66 | 7.04 |2.53 x 10°|6.21 x 103 | 5.48
fat-jet 7.01 | 6.56 | 6.03 {2.01 x 10° [4.95 x 103 | 4.66
b-veto 6.17 | 5.80 | 5.35 [1.96 x 10° |2.17 x 103 | 4.07
Mass window | 3.34 | 3.19 | 2.99 |5.66 x 103 400 2.08
Efficiency [1.37%|1.36%(1.34% | 0.96% 0.25% |1.31%

* We have different network structures to input the information of a jet.

Three ways of inputting jet kinematic information

1. Computer vision: a jet as an image;

2. Natural language processing: a jet as a sentence;

3. Particle flow network: letting the neural network to find the best jet
observables itself.
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* Computer vision

A jet is an image

* Expand the constituents of the fat jet in the n-¢ plane to form a 35x35 pixels
jet image with the granularity of 0.1x0.1;

* Intensity of a pixel: pr sum of the deposited particles; [cosan et al, 1407.5675]

* Pre-processing: translation, rotation and reflection.

SM W * +jets SM £ SMW*h . o .
A single jet image is rather sparse
"
g
L 3 "
E SM W * +jets SM tF SMW*h
W=h—1*vab W*h—1*v6b W*h—1%8b
B, =k, ‘q 4k ‘ -
T ’ Wi—>lv6b W*h-1*v8b

Average of 10,000 jet images
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* Computer vision

Convolutional neural network (CNN)

Mapping the image into the convolutional layers;

input image

00000 Convolutional layer

000006~
00000
00000~
0000

Mapping into multiple channels, and finally to fully connected layers

~,Convolutional -
input image layers [ +

I
I

A 2-dim image is mapped into a triple vector (ry ry ry) for probability
interpretation.
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* Natural language processing

A jet is a sentence

* Jet clustering history is a binary

tree;

* Momenta are words, the jet is
a sentence: [Louppe et al, 1702.00748]
4

Tty

R

B

D

i

(a) The clustering history of fat-jets from SM W= + jets.

(b) The clustering history of fat-jets from SM tt.

Recursive neural net (RecNN)

e Attach a vector u to each node

(with momentum v)

u, = o(Wyvi + by),

 Define the embedded vector

recursively
ug,
hy, = By
o Wh hk'R

Uy

+bh )

VA OB OOV IAAN

(c) The clustering history of fat-jets from SM W=*h.

d) The clustering history of fat-jets from £ v4b.
(d) g y j

if kisaleaf, . — —

otherwise,

e The h of the tree root is the

embedded vector.
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(e) The clustering history of fat-jets from £=v6b.

AN 4'm(‘ AR AL DAL

f) The clustering history of fat-jets from £Tv8b.
( g y ]
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* Natural language processing

A jet is a sentence m m mm % m

* Jet clustering history is a binary
tree;
* Momenta are words, the jetis [ 1| [
4

(a) The clustering history of fat-jets from SM W= + jets.

. (b) The clustering history of fat-jets from SM tt.
Recursive neural net (RecNN)

* Attach a vector u to each node || 000 On [N 2 [ DAGEAGA] |G AIR
(with momentum v)

u, = o(Wyvi + by),

* Define the embedded vector h is then fed into a fully connected neural
recursively network for classification.

uy, if k£ is a leaf; A
hy |

h;, = r .
o Wh |hgp| +bn |, otherwise, clustering history of fat-jets from ££v6b.
uy
* The h of the tree root is the ol A .
embedded vector. (f) The clustering history of fat-jets from £=v8b.

Ke-Pan Xie (¥{47[H7), U of Nebraska-Lincoln



* Particle flow network (PFN)

The high-level observables of a jet

e The observables of a jet constituent (single particle) p = {&1,&2,- - ,&a}

* The high-level observables can be generally written as O = F (Z q)(pi)>

* Here F and O are functions depending on the observable O.

Track Multiplicity
Jet Charge [72]

Observable O Map Function F'

Mass m pH F(al)y = JZFE, Table from
Multiplicity M |1 F(z) =2 1810.05165
Track Mass Mrack | P*lorack F(zt) = \/atz,

M, track ]Itrack

Qn (pTa Qp&g")

Eventropy [74] zlnz | (pr,prinpr)
Momentum Dispersion [93] p? (pT,p2T)
C parameter [94] C (171, p® p/|P])

Fal=g

F(z,y) = y/z"
F(z,y)=y/z —Inx

F(z,y) = /y/x?

F(z,Y) =55 [(TrY)? — TrY?|

Let the neural network find the correct observable itself!

* Use neural layers to represent F and O;
* Train the network to find the best F and @.[<omiske et al, 1810.05165]
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* Particle flow network (PFN)

The high-level observables of a jet

« The observables of a jet constituent (single particle) » = {&1,62,- -+, &a}

* The high-level observables can be generally written as O = F (Z CD(pi))

* Here F and O are functions depending on the observable O.

s (—)
W 7ANA

F functioni {303y s

[—10) :

/ \\\. @ 01 " \ " % 7
.\\ "A&»\\W 1 \‘g'g’/’f;.{ . @ann @
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p = . l‘¢ 4 ,‘W‘ ARE 4 Di AT /"W“\ /"W“\ ‘\\
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A

Let the neural network find the correct observable itself!

* Use neural layers to represent F and O;
* Train the network to find the best F and @.[Komiske et al, 1810.05165]
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e The results

Summary for the networks
Make a cut on the neuron

output and get the signal
& (weighted) background
efficiencies

1. Computer vision: CNN;
2. Natural language processing: RecNN;
3. Particle flow network: PFN.

The training results

Use particle flow network (PFN) as an illustration;
Signals has a peak for the r, neuron around 1;

PFN PFN PFN !
12 1
12 m SM W+jets 4.0 B SM W+jets B SM W+jets '
mam SM tt - i = SM i 10 - B SM tt :
mm h-4b (Mg=30 GeV) ) mmm h-4b (Mg =30 GeV)

Probability
Probability
Probability

* Based on output we can construct the (weighted) efficiency curves.
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e The results

Signal efficiencies versus background rejections
* Benchmark: M(ag) = 30 GeV; M(a;) = 12 GeV

10 rererreprrrererereerrerepreeee 10° e ey 10 e

gt CNN (etimage) | o ] P S SR O i

sLPENS . L ] 3L ] ]

s 10 1 & 10 ; | ,

— 102 1= 1025\,l 777777777777777777 ] ]

I :

101?’””*;”” . E 101’"””l””t\"“‘iii} ””” E g E

W+h—>l+v4b \ ] W+h—>l+v6b U W+h—>l+v8b ‘

100k e 1005 = 100% s
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10

€s €s €s
Features

* For a given signal channel, all three neural networks have similar
performance, implying the kinematic information has been efficiently
learned.

* Increasing the b-multiplicity enhances the performance.
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* Extending the PFN

The particle flow neural net is extensible R ——
. . NN
* The single particle observables can be .///A\\‘\\'l{//s\\\‘g. ®,
. . a2, @\,
extended to include particle ID and &\ NN @
: ! ;’Q:ﬂ/‘;‘?\g“§§‘§330ﬁ’g &
impact parameters from tracker. & | O AT RN 23
p= VR RO il &
| SEOSHREIRD 2
¢ 1% '["\' VRO Pe
d \\ 0O By
. . P
* The impact parameters are especially : ; 2 Ps
helpful for a b-rich final state. PO 9 : ® function
10° g e 10°
© SM W*+jets 1 [ SM W*+jets ]
- SMt7 - SMt7 ]
107 SM w*h = SM W*h =107

[*v4b
[Fv6b

[*v4b
[*v6b

FFv8b

Normalized distributions

Zo [mm]
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* Extending the PFN

The extended PFN

______________________

- Wrholtvab
102
02" 04 06 08
€s

10

¥ .
100204 06 08

€S

10

The branching ratio limits

1.0 prerrrre S
08f . -
Dol
_; ! D
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085040608
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=
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0.64§
0.48§
032

0.16

008

CNN (jet image)

RecNN (jet sentence)

PFN (momentum only)

PFN (with PID information)
PFN (with impact parameters)

10°¢

¥ .
100204 06 08

€S
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* Possibility of a h -> n b tagger

The universality

: Mo = 30 GeV
We can apply a PFN tramed on Classification accuracies 0 ©
one channel to another channel; My = 12 GeV
Trained
HRECOM Nk Lap | 0% 06D | £E 18D
. . Tested
Results are insensitive to the b- csted on
e 0tuvab  |73.1% 69.7% | 68.1%
multiplicity; <
Mo =30 GeV| ¢Tveb |77.0%|76.5% | 74.9%
, M, =12 GeV| ¢*u8b |79.4%|79.9% |79.4%
We migh I have a
e. ght be able to _ 4b + 6b + 8b | 76.4% | 74.7% | 73.6%
universal tagger for h to n b-jets.
1.0 remrmgrerremgrrsreseeesre 10° g
0.8F - 10% P\ s
06F- o SN .
@Q : o @Q 10 3 Sy B
I - : e C :\‘\\ . ! %
v 0.4E----8b-8b[AUC=0.99]- - ™ 10%E----i---t )
E 4b-4b+6b+8b[AUC=0.97] | F RS\
0.2 ;—-(»h »l 1b+6b+8b|. ‘;L’(‘ (‘i 96]- 4 101 SSRRETEEEEEEEEEEEE R
E 8b— 1b \b[\LL 0. 94] : ; | :
0. 3 0 I i I
80 02 04 06 08 10 1002 04 06 08
€S €s
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Nanjing Museum
Photographed on April 14, 2018
s ‘I'i‘k\
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e Conclusion

We have trained different neural networks to
learn the fat jets from

1. Wh (with h decaying to 4b, 6b or 8b);

2. W+ jets;

3. ttbar,

To distinguish signal from backgrounds.

What we learn from machine learning:

 All of CNN, RecNN and PFN can learn the
kinematic information of jet constituents
efficiently and yield similar performances;

 PFN can be extended to include more
information such as PID and tracks, thus
work much better;

* Auniversal tagger for h to n b-jet is possible.

Thank you!




Backup

To sui)pfess the background, we require the final state
to have exactly one charged lepton with

p5 > 25 GeV, |nf| < 2.5,
P FT > 200 GeV, Mz <100 GeV, (1)

where the transverse mass is defined as

My = \/2P51ET (1 —cos A¢), (2)

with A¢ being the azimuthal angle difference between
¢* and Fr. We also demand at least one fat-jet
reconstructed by the anti-k; algorithm with AR = 1.5
and

200 GeV < p. <500 GeV, |p7|<25.  (3)

The fat-jets are trimmed by R.y = 0.3 and f.x =
0.05 [36]. Next, the small-R jets are clustered using anti-
k; algorithm with R = 0.4, and b-tagged ones within

P >25GeV, |n°| <25, (4)

are vetoed to suppress the tt background. Finally, we
require the mass of the leading fat-jet to be in the Higgs
mass window

100 GeV < my < 150 GeV, (5)
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e Backup

] My = 30 GeV
Classification accuracies SM
M1 =12 GeV
Trained _
HREEOR I  bb | £t vab | e u6b | £ u8h
Tested on
SM h — bb 67.1% |61.4% |58.1% | 56.5%
0T v4b 69.3% |73.1% |69.7% | 68.1%
Mo =30 GeV| ¢*u6b 72.3% | 77.0% | 76.5% | 74.9%
M; =12 GeV| £*u8b 74.4% |79.4% | 79.9% | 79.4%
4b + 6b + 8b — 76.4% | 74.7% | 73.6%
My = 50 GeV
Classification accuracies SM
M1 = 20 GeV
Trained _
WS | & et | #Eods | it | #EusE
Tested on
SM h — bb 67.1% 56.3% | 55.8% | 52.3%
2T v4b 62.4% 72.9% | 73.9% | 70.7%
Mo = 50 GeV
£Ev6b 64.6% 76.8% | 77.3% | 76.6%
M; = 20 GeV
£Eu8b 66.5% 79.4% | 80.2% | 80.1%
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