

Combined fitting of the weak mxing angle and the proton structure parameters using the forward-backward charge asymmetry

Siqi Yang¹, Yao Fu¹, Minghui Liu¹, Liang Han¹, C.-P. Yuan², Tiejiun Hou³

2021.11

¹University of Science and Technology of China ²Michigan State University ³Northeastern University

AFB from Drell-Yan process

AFB from Drell-Yan process

AFB at hadron colliders

Dilution effect

- Symmetrical initial state of proton-proton
- Asymmetry redefined according to the Z boson boost
- Relative difference between quarks and antiquarks

 $A_{FB} \to A^h_{FB}$

AFB governed by EW and dilution effect

AFB used in PDF global fitting

Using AFB in the PDF global fitting, corresponding to 130 fb⁻¹ data collected by ATLAS or CMS (LHC Run 2)

AFB generated using ResBos+CT14HERA2

Correlations between EW and proton structure

Correlations

- Observation on proton structure highly correlated with determination on $sin^2\theta_W$
- Proton structure: need PDF-independent measurement of sin²θ_W as input (LEP, SLC, or Tevatron)
- Measurement of $sin^2\theta_W$: limited by the current modeling of proton structure

Using AFB in the PDF global fitting. The input AFB is generated with its $sin^2\theta_W$ value different from the PDF global fitting theory (0.2315 vs 0.2324)

Determination on $sin^2\theta_W$ and proton structure

PDF global fitting strategy: not a good strategy

- Not supporting a combined fitting on $sin^2\theta_W$ and proton structure
- Massive work to provide a unified EW calculation in extensive experimental results to treat stw and a floating parameter
- PDF global fitting is a combination of all data under various SM assumptions. Determinations on proton structure and stw are not single-data independent measurement

Factorization on AFB

Collins-soper frame

- Center of mass frame
- z-axis defined as bisector of the angle formed by the direction of one incoming hadron beam (HA) and the negative direction of the other incoming hadron beam (HB)

Collins-soper frame 1:

HA: according to "quark direction" HB: according to "antiquark direction"

 $\cos \theta_q$

Collins-soper frame 2:

HA: according to Z boson boost HB: negative direction to HA

 $\cos \theta_h$

if Eq > Eqbar:
$$\cos \theta_h = \cos \theta_q$$

if Eqbar > Eq: $\cos \theta_h = -\cos \theta_q$

Factorization on AFB

Differential cross section of DY process in cosθq:

$$\begin{aligned} \frac{d\sigma}{d\cos\theta_q dY dM dQ_T} &= \sum_f \alpha_f(Y, M, Q_T) \times \left\{ (1 + \cos^2 \theta_q) \right. \\ &+ A_0^f(Y, M, Q_T) (1 - 3\cos^2 \theta_q) \\ &+ A_4^f(Y, M, Q_T) \cos\theta_q \right\}, \end{aligned}$$

Differential cross section of DY process in cosθh:

$$\begin{aligned} & \frac{d\sigma}{d\cos\theta_h dY dM dQ_T} = \sum_f \alpha_f(Y, M, Q_T) \\ \times & \left\{ (1 + \cos^2\theta_h) + A_0^f(Y, M, Q_T)(1 - 3\cos^2\theta_h) \\ + & \left[1 - 2D_f(Y, M, Q_T) \right] A_4^f(Y, M, Q_T) \cos\theta_h \right\}, \end{aligned}$$

 $D_f(Y, M, Q_T)$

probability of cosθh = -cosθq in a
specific ffbar subprocess, i.e.
the probability of anti-quarks carries
higher energy than quarks

Factorization on AFB

$$\begin{aligned} A_{FB}^{h}(Y, M, Q_{T}) &= \\ \frac{\sum_{f} [1 - 2D_{f}(Y, M, Q_{T})] \alpha_{f}(Y, M, Q_{T}) A_{FB}^{f}(Y, M, Q_{T})}{\sum_{f} \alpha_{f}(Y, M, Q_{T})} \end{aligned}$$

$$\begin{aligned} A_{FB}^{h}(Y, M, Q_{T}) &= \\ \left[\Delta_{u}(Y, M, Q_{T}) + P_{0}^{u}(Y, Q_{T})\right] \cdot A_{FB}^{u}(Y, M, Q_{T}; \sin^{2}\theta_{\text{eff}}^{\ell}) \\ &+ \left[\Delta_{d}(Y, M, Q_{T}) + P_{0}^{d}(Y, Q_{T})\right] \cdot A_{FB}^{d}(Y, M, Q_{T}; \sin^{2}\theta_{\text{eff}}^{\ell}) \end{aligned}$$

AFB^f is independent with proton structure. Fully calculated in EW theory !!

$$P_{0}^{u}(Y,Q_{T}) = \int \frac{1 - 2D_{u}(Y,M,Q_{T})\alpha_{u}(Y,M,Q_{T})}{\sum_{f}\alpha_{f}(Y,M,Q_{T})} dM / \int dM$$

$$P_{0}^{d}(Y,Q_{T}) = \int \frac{1 - 2D_{d}(Y,M,Q_{T})\alpha_{d}(Y,M,Q_{T})}{\sum_{f}\alpha_{f}(Y,M,Q_{T})} dM / \int dM$$

$$\Delta_{u}(Y,M,Q_{T}) = \frac{1 - 2D_{u}(Y,M,Q_{T})\alpha_{u}(Y,M,Q_{T})}{\sum_{f}\alpha_{f}(Y,M,Q_{T})}$$

$$-P_{0}^{u}(Y,Q_{T})$$

$$\Delta_{d}(Y,M,Q_{T}) = \frac{1 - 2D_{d}(Y,M,Q_{T})\alpha_{d}(Y,M,Q_{T})}{\sum_{f}\alpha_{f}(Y,M,Q_{T})}$$

(5)

 $-P_0^d(Y,Q_T)$

Parton parameters

 $A_{FB}^{h}(Y, M, Q_{T}) =$ $[\Delta_{u}(Y, M, Q_{T}) + P_{0}^{u}(Y, Q_{T})] \cdot A_{FB}^{u}(Y, M, Q_{T}; \sin^{2}\theta_{\text{eff}}^{\ell})$ $+ [\Delta_{d}(Y, M, Q_{T}) + P_{0}^{d}(Y, Q_{T})] \cdot A_{FB}^{d}(Y, M, Q_{T}; \sin^{2}\theta_{\text{eff}}^{\ell})$

P0 parameters

• Combined information on dilution effect and relative cross section, averaged in a given mass range (or x). Dominating part. P0 parameters and weak mixing angle will be the parameters in a combined fitting using AFB

Δ parameters

- Mass dependence (or x dependence). It is difficult to be determined using AFB due to lack of sensitivity.
- However it introduces small uncertainties, because AFB is observed in a very small mass region with respect to the O(10) TeV level collision energy

Parton parameters

POu vs POd

• P0u generally larger than P0d, due to a smaller dilution effect in uubar subprocess

As a function of ZY

- Smaller ZY == larger dilution effect, $P0 \rightarrow 0$
- Larger ZY == smaller dilution effect, P0 → relative cross section

Ratio of P0u / P0d

- s, c and b contributions cancel out
- Pure-observation on the difference between u and d quarks

A combined fitting procedure and closure

A proton structure observation using 1000 fb-1 data at the LHC

CT18 induced uncertainty on sin ² θw	0.00038
Combined fitting uncertainty on sin ² 0 _W	0.00005
Δ -induced uncertainty on $sin^2 \Theta_W$	0.00008
Input value of sin²θ _w in the pseudo-daeta	0.23150
Fitted value of $sin^2\theta_W$	0.23156

Summary

Background review

- AFB@LHC are sensitive to both EW and proton structure
- However strongly correlated, both of them are limited

Factoriztion on AFB

- We report a method which factorize the observed AFB into EW calculations and welldefined proton structure parameters
- The protons structure parameters can be experimentally observed, universally derived in theory calculation. Its definition is model independent
- Relative difference between q and qbar; Relative difference between u and d

For future measurement

- Independent measurement using single AFB observation
- Correlation between EW and proton structure well considered
- Precision significantly improved for determination on both weak mixin angle and proton structure

Backup

An example of pre-work

Phys. Rev. Lett. 126, 041801 Emanuele Bagnaschi and Alessandro Vicini

$$\chi_k^2 = \sum_{i \in \text{bins}} \frac{[(\mathcal{T}_{0,k})_i - (\mathcal{D}^{\exp})_i - \sum_{r \in \mathcal{R}} \alpha_r (\mathcal{S}_{r,k})_i]^2}{\sigma_i^2} + \sum_{r \in \mathcal{R}} \alpha_r^2,$$

- (T0, k)i: theory prediction of an observable
- (Dexp)i: data measurement
- **α**r: nuisance parameters
- (Sr, k)i: (Tr, k)i (T0, k)i representing PDF uncertainties

Nuisance parameter fitting:

- Only for EW parameter determintion. Nuisance parameters can't be used as observation on proton structure
- Model-dependent
- Assumption: the data used for measurement is well-consistent with current theory predictions both on EW and PDFs