



# Search for Higgs→ invisible decays & dark matter with Z(ll)+MET final state with the ATLAS detector

**Chuanshun Wei** 

University of Science and Technology of China | University of Michigan

**CLHCP 2021** 

11/25/2021

## **Motivation**



- From Astrophysics observations, dark matter (DM) particles only have gravitational interaction, and maybe weak interaction.
- Higgs boson can couple to massive particles, therefore it could have coupling with the dark matter particles. Higgs can be a bridge between Standard Model (SM) particles and BSM DM particles
- We search for DM through Higgs decays to invisible particles associate with Z production
- This search is based on the full dataset of  $139 f b^{-1}$  collected from 2015-2018 at 13 TeV with the ATLAS detector.



## Introduction



- In Standard Model(SM), Higgs can decay to invisible 4—*neutrino* final state.
   H -> ZZ\* -> 4 v , BR<sup>SM</sup><sub>Hinv</sub> ≈ 0.1%
- Beyond Standard Model(BSM), Higgs could decay to Dark Matter particles which cannot be detected by the ATLAS detector.
  - $BR_{Hinv}^{total} = BR_{Hinv}^{SM} + BR_{Hinv}^{BSM} > 0.1\%$
  - Current combined ATLAS limit of BR<sup>total</sup><sub>Hinv</sub> <11% (ATLAS-CONF-2020-052)
- This analysis uses the following channels of Higgs production ( $\chi$  denotes DM particle)



Main production of ZH (qq -> ZH)

ZH production through gg ZH

## **DM Model**

- Simplified DM Model
  - DM is produced through a mediator particle (couples to SM particles)
    - the mediator mass
    - DM particle masses
    - the mediator couplings  $g_{\chi}$ ,  $g_{\mathrm{q}}$ , and  $g_{l}$
  - Search in a parameter space  $\{m_{\chi}^{},\,m_{med}^{}\}$  with  $g_i^{}$  fixed
- 2-Higgs-Doublet Models
  - CP-conserving type II 2HDM with parameters:
    - $m_A$ : mass of the pseudo-scalar Higgs boson
    - $m_a$ : mass of the additional pseudo-scalar
    - $\tan \beta$ : ratio of the two Higgs doublets
    - sin θ: mixing angle between the two
       CP-odd weak spin-0 eigenstates
  - Following recommendations in the following paper
    - T. Abe et al., LHC Dark Matter Working Group: Next-generation spin-0 dark matter models, Phys. Dark Univ. 27 (2020) 100351, arXiv: 1810.09420 [hep-ex].



| Selection criteria                                    | Background reduced                  | ) P-P-U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $p_T^{\ell_1}(p_T^{\ell_2}) > 30 \ (20) \ \text{GeV}$ |                                     | $\left  \begin{array}{c} \ell \\ \ell^{+} \\ $ |
| Veto events with $p_T^{\ell_3} > 7 \text{ GeV}$       | WZ                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $76 < m_{\ell\ell} < 106 \text{ GeV}$                 | Non-resonant $\ell^+\ell^-$         | b-jet veto $m_{\ell\ell} - m_Z   < 15$ Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Veto events with a <i>b</i> -jet                      | Single top, <i>tī</i>               | $F_{\tau}^{\text{miss}} > 90 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $E_{\rm T}^{\rm miss}$ > 90 GeV                       | Z+jets                              | $E_{\rm T}^{\rm miss}  {\rm signif.} > 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $E_{\rm T}^{\rm miss}$ significance > 9               | Z+jets                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\Delta R(\ell \ell) < 1.8$                           | Z+jets, non-resonant $\ell^+\ell^-$ | Jet collection = AntiKt4EMPFlow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## Background



- Major backgrounds are from following processes
  - ZZ and WZ processes (Z -> II, real MET)
  - Non-Z two leptons (Same-Flavor-Opposite-Sign leptons, MET) (WW, ttbar, tW, Z -> ττ)
  - Z+jets (Z -> II, MET from jet mismeasurement)
- Other minor background
  - W+jets, ttV, ttVV
- Use Control Region(CR) method to estimate the background from ZZ, WZ and non-Z lepton pair.

| Background  | Contribution/% | CR in simultaneous fit        |
|-------------|----------------|-------------------------------|
| ZZ          | 44             | 4I CR                         |
| WZ          | 26             | 3I CR                         |
| Non-res. ll | 14             | eμ CR                         |
| Z+jets      | 15             | MC Simulation / CR validation |
| Others      | <1             | MC Simulation                 |

# 31 & 41 Control Region Definitions

#### 1958 1958 1958 1958 1958 1958 1958

#### 3I CR

- WZ process
- Event selection requires SFOS pair, and one additional lepton.
- Select W(Iv) with  $m_T(W) > 60 \ GeV$ 
  - $m_T(W)$ :

### $m_T(W) = \sqrt{2p_T^\ell E_{\rm T}^{\rm miss}(1-cos\Delta\phi)}$

## eμ CR

- WW, tt, tW, Ζττ process
- Event selection requires OFOS pair (eµ)

#### 4I CR

- ZZ process
- Randomly assign one Z boson as invisible Z
- Slightly loose lepton Pt selection
- Inherit other selections from SR (signal region)



| SR                                                  | $e\mu$ CR                                                                                    | 3 <i>l</i> CR                                                                              | 4 <i>l</i> CR                                         |  |  |  |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|--|
| Vertex with $\ge 2$ tracks with $p_{\rm T} > 1$ GeV |                                                                                              |                                                                                            |                                                       |  |  |  |  |  |  |  |
| Jet Cleaning                                        |                                                                                              |                                                                                            |                                                       |  |  |  |  |  |  |  |
|                                                     |                                                                                              | Single lepton trigger                                                                      |                                                       |  |  |  |  |  |  |  |
|                                                     |                                                                                              | Trigger matching                                                                           |                                                       |  |  |  |  |  |  |  |
|                                                     |                                                                                              | Electron crack region veto                                                                 |                                                       |  |  |  |  |  |  |  |
| SFOS dilepton pair                                  | SFOS dilepton pairOFOS dilepton pairSFOS pair plus an additional lepton2 SFOS dilepton pairs |                                                                                            |                                                       |  |  |  |  |  |  |  |
| Lepton p <sub>T</sub>                               | > 30, 20 GeV                                                                                 | Lepton $p_{\rm T} > 30, 20, 20 \text{ GeV}$ Lepton $p_{\rm T} > 27, 15, 15, 7 \text{ GeV}$ |                                                       |  |  |  |  |  |  |  |
| 3rd lepton veto with                                | Loose ID and $p_{\rm T} > 7 \text{ GeV}$                                                     | 4th lepton veto with Loose ID and $p_{\rm T}$ > 7 GeV                                      | 5th lepton veto with Loose ID and $p_{\rm T}$ > 7 GeV |  |  |  |  |  |  |  |
| $76 < m_{ll} < 106 \text{ GeV}$                     | $76 < m_{e\mu} < 106 \text{ GeV}$                                                            | $76 < m_{ll,SFOS} < 106 \text{ GeV}$                                                       | Both pairs with $76 < m_{ll} < 106 \text{ GeV}$       |  |  |  |  |  |  |  |
|                                                     | b-j                                                                                          | et veto ( $p_{\rm T}$ > 20 GeV, $ \eta $ < 2.5, MV2c10, 85% W                              | P)                                                    |  |  |  |  |  |  |  |
|                                                     |                                                                                              | Region-specific selections                                                                 |                                                       |  |  |  |  |  |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$                    | > 90 GeV                                                                                     | $E_{\rm T}^{\rm miss}$ > 30 GeV                                                            | $E_{\rm T}^{\rm miss}$ ' > 90 GeV                     |  |  |  |  |  |  |  |
| $\Delta R(t)$                                       | $\ell\ell) < 1.8$                                                                            | $m_T(W) > 60 \text{ GeV}$                                                                  | $\Delta R(\ell \ell) < 1.8$                           |  |  |  |  |  |  |  |
| $E_{ m T}^{ m miss}$ sig                            | nificance > 9                                                                                | $E_{\rm T}^{\rm miss}$ significance > 3                                                    | $E_{\rm T}^{\rm miss}$ si gnificance' > 9             |  |  |  |  |  |  |  |

## Background – Data vs Prediction





## Yield of selected events in CRs and SR



|                                          | SR             | eμ CR             | 3ℓ CR           | $4\ell CR$      |
|------------------------------------------|----------------|-------------------|-----------------|-----------------|
| Observed events                          | 6382           | 891               | 11622           | 314             |
| Expected yields after fit                | $6385 \pm 81$  | $895 \pm 29$      | $11620 \pm 110$ | $296 \pm 11$    |
| $ZH \rightarrow \ell\ell + \mathrm{inv}$ | $4 \pm 110$    | -                 | -               | -               |
| $ZZ \rightarrow \ell\ell\nu\nu$          | $2681 \pm 110$ | $0.763 \pm 0.064$ | $2.61 \pm 0.18$ | -               |
| WZ                                       | $1595 \pm 34$  | $11.6 \pm 1.1$    | $10623 \pm 150$ | -               |
| Z + jets                                 | $1111 \pm 100$ | $0.79 \pm 0.30$   | $235 \pm 89$    | -               |
| Non-resonant                             | 881 ± 39       | $876 \pm 29$      | $220 \pm 31$    | -               |
| $ZZ \rightarrow 4\ell$                   | $85.8 \pm 5.5$ | $0.621 \pm 0.056$ | $443 \pm 40$    | $295 \pm 11$    |
| $t\bar{t} + V$                           | $12.7 \pm 2.8$ | $1.76 \pm 0.41$   | $53 \pm 12$     | -               |
| Triboson                                 | $13.0 \pm 6.2$ | $3.1 \pm 1.4$     | $44 \pm 20$     | $0.48 \pm 0.23$ |

 Fitting SR and CRs simultaneously
 Floating Normalization factors for WZ and non-Z(II) processes

|                           | Asimov | Data |  |  |  |  |  |
|---------------------------|--------|------|--|--|--|--|--|
| Hinv BR Limit<br>(95% CL) | 0.19   | 0.19 |  |  |  |  |  |



 $g_{\chi} = 1.0$  $g_q = 0.25$  $g_{\ell} = 0$ 

## Results – Limits on 2HDMa Models

m<sub>a</sub> [GeV]

m₄ [GeV]

 $m_a$  [GeV]





Magenta line: ATLAS Collaboration, Constraints on mediator-based dark matter and scalar dark energy models using  $v_s = 13$  TeV pp collision data collected by the ATLAS detector JHEP 05 (2019) 142, arXiv: 1903.01400 [hep-ex].

Scan Strategy: T. Abe et al., LHC Dark Matter Working Group: Next-generation spin-0 dark matter models, Phys. Dark Univ. 27 (2020) 100351, arXiv: 1810.09420 [hep-ex].



**Red line**: ATLAS Collaboration, *Constraints on mediator-based dark matter and scalar dark energy models using s* = 13 *TeV pp collision data collected by the ATLAS detector*, JHEP **05** (2019) 142, arXiv: 1903.01400 [hep-ex].









- We use full Run-2 dataset to search for dark matter production associate with Z  $\rightarrow$  II
- Background processes estimated through the CR method and MC simulation. Good agreement found between data and estimation in the CRs(No data excess in the SR over the background predictions).
- Set the observed limit on BR of H  $\rightarrow$  invisible decay:
  - 0.19 (exp.), 0.19 (obs.) [95% C.L.]
- This result significantly improved sensitivity in comparison of the early Run-2 result:
  - 0.39 (exp.), 0.67 (obs.)









- To further separate the Higgs invisible signal and background, BDT is used as the Signal Region(SR) discriminant variable
- BDT input variables:
  - Z rapidity
  - ΔR(II)
  - ΔΦ(MET, Z\_pT)
  - MET Significance
  - Fractional pT
  - HT
  - MET/HT
  - M(II)

#### TMVA overtraining check for classifier: BDTG



**BDT Response with Final SR Selection** 

## Uncertainties



| Uncertainty source                          | $\Delta \mathcal{B}$ [%] |
|---------------------------------------------|--------------------------|
| Statistical uncertainty                     | 5.1                      |
| Systematic uncertainties                    | 7.4                      |
| Theory uncertainties                        | 4.9                      |
| Signal modelling                            | 0.4                      |
| ZZ modelling                                | 4.4                      |
| Non-ZZ background modelling                 | 2.1                      |
| Experimental uncertainties (excl. MC stat.) | 4.6                      |
| Luminosity, pile-up                         | 1.5                      |
| Jets, $E_{\rm T}^{\rm miss}$                | 4.0                      |
| Flavour tagging                             | 0.4                      |
| Electrons, muons                            | 1.2                      |
| MC statistical uncertainty                  | 1.6                      |
| Total uncertainty                           | 9.0                      |



- Use TRexFitter to perform the simultaneous fit with control regions used in addition to the signal region.
- Set floating normalization factors in WZ and e $\mu$  CR.

The right plot shows the Higgs boson to invisible particles branching ratio for TRExFitter fits that include no control regions, 3I, eµ, 4I and all control regions.

| Channel | BR limit | $\mu_{WZ}$        | $\mu_{em}$        |  |  |  |  |
|---------|----------|-------------------|-------------------|--|--|--|--|
| comb    | 0.190    | $1.000 \pm 0.071$ | $1.000 \pm 0.118$ |  |  |  |  |



Chuanshun V

Fit



#### Pulls for H -> invisible fit

Fit





| SigXsecOverSM    | 100.0         | 15.9                   | 0.7                 | 5.1                    | -5.0         | -6.8         | -0.5      | -7.1   | 7.1         | 17.8          | 0.3       | -8.6        | 1.1         | -3.6         | -20.5              | -33.9       | -15.7         | 15.4                  | -0.7                 |
|------------------|---------------|------------------------|---------------------|------------------------|--------------|--------------|-----------|--------|-------------|---------------|-----------|-------------|-------------|--------------|--------------------|-------------|---------------|-----------------------|----------------------|
| avor_Composition | 15.9          | 100.0                  | 20.0                | -24.3                  | 11.6         | 8.2          | -13.2     | -0.0   | -22.3       | 14.0          | -2.2      | -7.9        | 2.2         | -5.7         | 1.9                | -1.1        | 6.5           | 20.8                  | 22.2                 |
| Flavor_Response  | 0.7           | 20.0                   | 100.0               | 10.0                   | -1.9         | -1.0         | 5.3       | 0.9    | 14.6        | -3.3          | 1.4       | 5.8         | -3.3        | 3.5          | -0.1               | 0.6         | 0.3           | -0.9                  | -12.2                |
| eup_RhoTopology  | 5.1           | -24.3                  | 10.0                | 100.0                  | 2.9          | -0.5         | -3.7      | -0.0   | -9.2        | -0.5          | -1.3      | -4.0        | 2.0         | -2.8         | 0.4                | -0.2        | 1.8           | 16.4                  | 9.3                  |
| MET_ResoPara     | -5.0          | 11.6                   | -1.9                | 2.9                    | 100.0        | -19.2        | 26.5      | -0.4   | -15.5       | -6.8          | 2.6       | 4.9         | -0.6        | 5.2          | -1.5               | 0.1         | -4.8          | -7.6                  | 12.5                 |
| MET_ResoPerp     | -6.8          | 8.2                    | -1.0                | -0.5                   | -19.2        | 100.0        | 25.0      | -0.5   | -16.0       | -19.5         | -1.5      | 1.4         | 0.0         | 0.9          | -2.5               | 1.2         | -11.8         | -4.7                  | 13.3                 |
| MET_Scale        | -0.5          | -13.2                  | 5.3                 | -3.7                   | 26.5         | 25.0         | 100.0     | 0.4    | 23.9        | 21.7          | -0.4      | -3.2        | 3.9         | -3.0         | 0.6                | -1.7        | 3.6           | 4.6                   | -19.5                |
| WZ_PDF           | -7.1          | -0.0                   | 0.9                 | -0.0                   | -0.4         | -0.5         | 0.4       | 100.0  | -4.3        | -0.8          | 0.0       | 0.1         | -0.1        | 0.0          | -0.2               | 0.1         | -0.6          | 0.4                   | -43.4                |
| WZ_QCDscale      | 7.1           | -22.3                  | 14.6                | -9.2                   | -15.5        | -16.0        | 23.9      | -4.3   | 100.0       | -3.5          | 1.8       | 4.9         | -1.7        | 2.3          | 0.3                | 0.0         | -1.9          | -7.5                  | -85.2                |
| ZjetsQCDscale    | 17.8          | 14.0                   | -3.3                | -0.5                   | -6.8         | -19.5        | 21.7      | -0.8   | -3.5        | 100.0         | -8.0      | -1.8        | 8.4         | -9.9         | -0.1               | 3.5         | -6.7          | 18.5                  | 9.1                  |
| emu_WWQCD        | 0.3           | -2.2                   | 1.4                 | -1.3                   | 2.6          | -1.5         | -0.4      | 0.0    | 1.8         | -8.0          | 100.0     | -9.9        | 5.6         | -8.7         | -0.2               | 0.2         | -2.1          | -30.2                 | -1.7                 |
| emu_ttbarME      | -8.6          | -7.9                   | 5.8                 | -4.0                   | 4.9          | 1.4          | -3.2      | 0.1    | 4.9         | -1.8          | -9.9      | 100.0       | 9.7         | -19.1        | -1.1               | 0.3         | -4.9          | -37.2                 | -5.9                 |
| emu_ttbarPS      | 1.1           | 2.2                    | -3.3                | 2.0                    | -0.6         | 0.0          | 3.9       | -0.1   | -1.7        | 8.4           | 5.6       | 9.7         | 100.0       | 12.2         | 0.3                | -0.5        | 2.8           | -28.1                 | 2.1                  |
| emu_ttbarQCD     | -3.6          | -5.7                   | 3.5                 | -2.8                   | 5.2          | 0.9          | -3.0      | 0.0    | 2.3         | -9.9          | -8.7      | -19.1       | 12.2        | 100.0        | -0.6               | 0.3         | -3.9          | -57.8                 | -2.9                 |
| _QCDscale_Norm   | -20.5         | 1.9                    | -0.1                | 0.4                    | -1.5         | -2.5         | 0.6       | -0.2   | 0.3         | -0.1          | -0.2      | -1.1        | 0.3         | -0.6         | 100.0              | 0.3         | -1.5          | 2.4                   | 0.3                  |
| qqZZ_EWcorr      | -33.9         | -1.1                   | 0.6                 | -0.2                   | 0.1          | 1.2          | -1.7      | 0.1    | 0.0         | 3.5           | 0.2       | 0.3         | -0.5        | 0.3          | 0.3                | 100.0       | -22.0         | -0.2                  | 0.5                  |
| qqZZ_QCDscale    | -15.7         | 6.5                    | 0.3                 | 1.8                    | -4.8         | -11.8        | 3.6       | -0.6   | -1.9        | -6.7          | -2.1      | -4.9        | 2.8         | -3.9         | -1.5               | -22.0       | 100.0         | 11.8                  | 5.3                  |
| OverSM for EMU   | 15.4          | 20.8                   | -0.9                | 16.4                   | -7.6         | -4.7         | 4.6       | 0.4    | -7.5        | 18.5          | -30.2     | -37.2       | -28.1       | -57.8        | 2.4                | -0.2        | 11.8          | 100.0                 | 11.5                 |
| ecOverSM for WZ  | -0.7          | 22.2                   | -12.2               | 9.3                    | 12.5         | 13.3         | -19.5     | -43.4  | -85.2       | 9.1           | -1.7      | -5.9        | 2.1         | -2.9         | 0.3                | 0.5         | 5.3           | 11.5                  | 100.0                |
|                  | SigXsecOverSM | JET_Flavor_Composition | JET_Flavor_Response | JET_Pileup_RhoTopology | MET_ResoPara | MET_ResoPerp | MET_Scale | WZ_PDF | WZ_QCDscale | ZjetsQCDscale | emu_WWQCD | emu_ttbarME | emu_ttbarPS | emu_ttbarQCD | ggZZ_QCDscale_Norm | qqZZ_EWcorr | qqZZ_QCDscale | SigXsecOverSM for EMU | SigXsecOverSM for WZ |

## Reference





**Red Line**: *Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for dark matter mediators in visible and invisible decay channels and calculations of the thermal relic density,* 

Phys. Dark Univ. 26 (2019) 100377, arXiv: 1703.05703 [hep-ex].

Magenta line: ATLAS Collaboration, Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at s = 13 TeV with the ATLAS detector, Phys. Lett. B **776** (2018) 318, arXiv: 1708.09624 [hep-ex].