

$X \rightarrow Sh \rightarrow \gamma\gamma + 1/2L$

Search for X->SH model in the final states of two photons and multiple leptons with the ATLAS detector at the LHC

Kaili Zhang, on behalf of multilepton analysis team

<u>IHEP</u>

25/11/2021

Nanjing, CLHCP2021

Introduction

(b) Top pair associated production (ttH).

(c) Single top associated production (tH).

- BSM Extended 2HDM+S model
- $X \rightarrow Sh$ process would be an alternative higgs pair
- production.
 - Heavy cp-even scalar X decay into Higgs + Higgs-like scalar S.
 - For $m_S > m_{125}$, S would decay into WW and ZZ dominantly. Multilepton channels benefit from large branch ratio.
 - Higgs diphoton gives excellent clean spectrum and clear signature.

Related Study

CMS SH->bbtautau, JHEP 11 (2021) 057

ATLAS HH multilepton, on going

X-S Mass Grid

- 20 mass points has been chosen:
- S mass from 170 to 500 GeV
- X mass from 300 to 1000 GeV
 - Samples are generated with WW1l, WW2l and ZZ2l. Cross talks are considered.

4

Selection

- Good event
 - GRL, Pass the trigger, detector DQ.....
- 2 tight photons
 - Diphoton triggers used
 - $\gamma_{1_{Pt}} > 35 GeV$, $\gamma_{2_{Pt}} > 25 GeV$;
 - Tight ID, Tight ISO.
- At least 1 lepton
 - e/muon pt>10 GeV; PID: medium;
 - Hadronic tau not included.
- B-veto
 - B-77 veto to avoid the overlap.

- Regions defined:
 - WW1I: 1 e/muon + 2 central jets;
 - Central jet: pt>25 GeV, |eta|<2.5, pass overlap removal;
 - WW2I: 2 same flavor, OS leptons
 - Z-veto, $|m_{ll} 91| > 10 \text{ GeV}$

These 2 have enough statistics, use BDT to improve sensitivity.

- WW1e1m: OS 1 electron 1 muon;
- ZZ2I: 2 same flavor, OS leptons
 - In Z peak: $|m_{ll}-91| < 10~{
 m GeV}$

Limited statistics, used for number counting.

Sideband Data/MC consistence

- As our limited data yield, we use yy+jets(known as "Sherpa") and Vyy continuum MC in the BDT training.
- For 1l case the ratio of Sherpa and Vyy are fitted by variable MT_W.
- For 2I case, Vyy are scaled with MT_W mass bins.
- After tuning, The discrepancy between data and MC would be acceptable.

BDT training

- Signal MC, yy+jets, Vyy, ttyy, SM single Higgs and SM dihiggs used.
- 1 lepton 14 variables and 2lepton 11 variables.
- Cross validation method + 4 folds
- Parameterized X mass used
 - 20 signals samples, grouped by their S mass, using their true X mass in the BDT training. While background X mass randomly assigned
 - When applying BDT, background use the same X mass information as signals.
 - In this case, we have 5 individual BDT training but would have all different BDT output for different signals.

BDT outputs

Background modelling

- Use 0 lepton data-side band control region as shape.
 - 2nd exponential polynomial function used.

• All the region, 1I and 2I, assumed to share the same shape.

- Proper reweighting in N_jets
- Using OI to simulate the multilepton shape is

reliable, and the bias could be implemented.

 Lepton dependance introduced as uncertainty, up to 5%.

Mass distribution

Using shape from OL shape.

Using continuum MC

Stat-only results

POI set to cross section (X->SH).

	Smass=170	200	300	400	500
Xmass=300	455.39				
Xmass=400	415.37	611.81			
Xmass=500	260.57	360.98	535.75		
Xmass=600	204.50	260.83	309.04	452.33	
Xmass=750	170.40	178.81	200.69	275.96	349.24
Xmass=1000	141.30	138.62	132.78	162.42	184.70

Best limit in (X1000, S300) for 132.78fb, worst one in (X400, S200) for 611.81fb.

Limit: 155fb.
Limit: 139fb.

Systematics

- Following dihiggs combination scenario, 105 CP NPs introduced.
 - Also for Lumi, theoretic uncertainties and Br(S->WW and ZZ)
 - Lepton dependance, and impact for different bkg function form studied in the SS test.
- Statistics dominant
 - No NP has >5% impact in the pre-fit yields except for PRW_dataSF(11%).
 - No >5% impact in the post-fit.
 - Importing systematics led (X1000, S300) 12% worse, to 148fb.

Summary

- Study on $X \rightarrow Sh \rightarrow \gamma\gamma + 1/2L$ is done from X(300, 1000) and S(170, 500).
 - Best result could be achieved in (X1000, S300) for 132fb(stat only) and 148fb(sys).
- Systematics study done.
 - Interpolation to the whole plane, independent POI..... in the plan.
- Will EB soon and targeting Moriond 2022.

Thanks a lot for your attention!

Backups

111	200	400	400	500	500	500	600	600	600	600
m _X	170	400	200	170	200	200	170	200	200	400
WW11 DSID	800042	200044	200	200046	200	2000.49	200040	200	200051	400
wwn, DSID	800945	800944	800945	800946	800947	800948	800949	800950	800951	800952
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	77.56	82.25	81.14	88.92	88.45	83.35	91.86	91.69	90.37	84.82
Detector DQ	77.56	82.25	81.14	88.92	88.45	83.35	91.86	91.69	90.37	84.82
Has PV	77.56	82.25	81.14	88.92	88.45	83.35	91.86	91.69	90.37	84.82
2 loose photons	58.57	59.26	59.46	60.98	61.10	61.23	63.06	63.11	62.69	62.65
Trigger match	53.29	54.64	54.12	58.45	58.19	55.83	61.60	61.46	60.02	57.10
tight ID	45.04	46.47	46.07	49.67	49.36	47.09	52.24	52.01	50.49	47.84
isolation	36.73	39.99	38.98	44.28	43.61	39.70	47.45	46.98	44.37	40.26
rel. pT cuts	34.16	35.51	34.57	39.95	39.10	35.11	43.62	43.15	39.97	35.50
m_{yy} in [105, 160]GeV	33.81	35.18	34.16	39.51	38.59	34.34	43.21	42.64	39.11	34.43
b-veto	30.75	31.49	30.52	34.97	34.19	30.35	38.03	37.52	34.18	30.19
At least 11ep	19.32	19.81	20.30	21.27	22.71	20.67	21.92	24.46	23.73	20.55
pass WW11	11.01	13.12	13.85	15.20	16.58	16.11	16.27	18.60	18.92	16.95
WW21, DSID	800963	800964	800965	800966	800967	800968	800969	800970	800971	800972
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRI	100	100	100	100	100	100	100	100	100	100
Pass trigger	84.51	87.68	87.25	01.02	01 75	89.45	03.83	03.00	03 30	01.03
Datastor DO	84.51	87.68	87.25	01.02	01 75	80.45	02.82	02.00	02 20	01.03
Hea DV	04.51	07.00	07.25	91.92	91.75	09.4J 00.45	02.02	02.00	02.20	01.02
Places photons	59.15	07.00 57.75	59 42	91.92 50.10	5904	69.45	95.85	93.99	93.39	91.05
2 loose photons	58.15	51.15	58.45	59.10	58.94	60.23 55.25	50.62	50.21	60.45 59.15	61.59
Trigger match	55.05	55.45	55.28	30.75	30.22	35.25	59.03	59.21	38.15	50.72
tight ID	45.22	45.74	45.55	48.59	48.07	47.34	50.94	50.69	49.77	48.45
isolation	38.12	39.65	39.06	43.23	42.55	40.57	45.96	45.60	43.99	41.37
rel. pT cuts	35.49	34.90	34.68	38.88	38.01	35.87	42.10	41.73	39.45	36.56
m_{yy} in [105, 160]GeV	34.79	34.22	33.88	38.02	36.96	34.43	41.17	40.68	37.95	34.67
b-veto	33.56	32.74	32.39	36.23	35.17	32.95	39.05	38.65	36.08	32.96
At least 2lep	17.14	18.06	18.12	20.55	20.72	19.45	22.16	23.23	22.35	20.15
pass WW21	17.01	17.90	17.60	20.34	20.09	18.95	21.90	22.44	21.73	19.76
pass ZZ21	0.07	0.10	0.43	0.13	0.52	0.40	0.14	0.65	0.46	0.23
WW2l-em	8.46	8.91	8.85	10.17	10.27	9.64	10.96	11.50	11.02	10.03
fall to 1lepton category	11.93	10.51	10.99	11.07	11.14	10.93	11.54	11.82	11.33	10.58
ZZ21, DSID	800983	800984	800985	800986	800987	800988	800989	800990	800991	800992
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	77.68	81.12	80.26	87.03	86.52	81.65	89.98	89.82	88 24	82.69
Detector DO	77.68	81.12	80.26	87.03	86.52	81.65	89.98	89.82	88 24	82.69
Has PV	77.68	81.12	80.26	87.03	86.52	81.65	80.08	80.82	88.24	82.60
2 loose photons	52.42	52.66	54.12	54.02	55 21	55 70	56.02	57.10	56.06	57.22
Z loose photons	19 42	40.46	J4.15 40.14	52.62	52.40	50.00	55 57	55.65	54 47	57.55
tight ID	48.45	49.40	49.14	52.05	52.49	20.88	33.37	33.03	34.47 15.95	32.29
tight ID	40.75	41.91	41.52	44.61	44.41	42.81	46.87	46.93	45.85	43.71
isolation	32.83	35.78	34.68	39.36	38.81	35.77	42.31	42.05	39.74	36.32
rei. pT cuts	30.54	31.61	30.81	55.43	34.77	31.78	38.92	38.53	35.90	32.00
m_{yy} in [105, 160]GeV	29.93	30.98	30.14	34.67	33.94	30.73	38.17	37.69	34.73	30.70
b-veto	25.04	24.53	23.71	26.65	25.77	22.89	28.65	28.14	25.25	21.89
At least 2lep	12.82	12.97	12.87	13.79	13.86	13.75	14.16	14.69	15.67	13.50
pass WW21	10.13	9.66	6.13	9.94	6.21	5.69	9.99	6.26	6.18	5.16
pass ZZ21	2.64	3.24	6.68	3.77	7.60	7.99	4.08	8.35	9.40	8.25
WW21-em	0.07	0.09	0.08	0.09	0.09	0.13	0.11	0.11	0.14	0.11
fall to 1lepton category	8.52	8.06	7.69	8.76	8.32	6.26	9.56	9.20	6.33	5.53

Table 6: Efficiencies in percent for event selection for signals.

X	750	750	750	750	750	1000	1000	1000	1000	1000
S	170	200	300	400	500	170	200	300	400	500
WW11, DSID	800953	800954	800955	800956	800957	800938	800939	800940	800941	800942
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	93.90	93.92	93.60	92.95	90.06	95.70	95.56	95.69	95.69	95.31
Detector DQ	93.90	93.92	93.60	92.95	90.06	95.70	95.56	95.69	95.69	95.31
Has PV	93.90	93.92	93.60	92.95	90.06	95.70	95.56	95.69	95.69	95.31
2 loose photons	66.12	65.98	65.50	64.81	63.87	70.26	70.03	69.93	69.35	68.60
Trigger match	65.35	65.15	64.43	63.04	60.41	69.85	69.62	69.50	68.81	67.87
tight ID	55.30	55.05	54.46	52.80	50.27	59.30	58.99	58.67	58.08	56.94
isolation	51.01	50.75	49.51	46.92	43.19	55.65	55.44	54.89	53.74	51.84
rel. pT cuts	47.92	47.61	46.04	43.00	38.47	53.12	52.95	52.20	50.81	48.79
myy in [105, 160]GeV	47.57	47.12	45.22	41.89	37.09	52.87	52.51	51.55	49.92	47.62
b-veto	41.45	41.08	39.16	36.33	32.17	45.53	45.14	44.30	42.94	40.86
1lep	21.69	25.62	27.08	24.90	21.87	19.71	25.60	30.14	29.57	27.95
pass WW11	16.62	20.31	22.32	20.98	18.68	15.49	20.95	25.37	25.19	24.01
WW21, DSID	800973	800974	800975	800976	800977	800958	800959	800960	800961	800962
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	95.43	95 31	95 49	95 37	94 10	96.61	96 77	96.84	96.88	96.82
Detector DO	05.43	05.31	05.40	05 37	94.10	96.61	96.77	96.84	06.88	96.82
Has PV	05 43	95.51	05.40	05 37	94.10	96.61	96.77	96.84	90.88	90.82
2 loose photons	63.62	63 33	63 21	62.85	62.67	67.11	67.07	50.84 67.16	66.86	50.82 66.30
2 loose photons	62.04	62.62	62.21	61.51	50.53	66.77	66.70	66.76	66.37	65 70
tight ID	52 72	52.02	52 21	52.64	50.85	57.42	57.29	57.22	56.01	56.27
isolation	40.42	40.20	49.20	47.12	44.22	52.56	52.40	52.26	52.56	51.50
rol nT outs	49.45	49.29	40.39	47.15	20.40	50.00	50.75	50.20	10.46	10 15
ref. p1 cuts $\frac{1601GeV}{1}$	40.10	40.00	44.70	42.90	39.40	50.90	40.91	30.38 40.12	49.40	46.15
$m_{yy} = [105, 100] \text{GeV}$	43.52	44.90	45.55	40.95	25.14	30.10	49.81	49.12	47.84	40.02
D-veto	42.79	42.47	41.01	24.56	22.24	40.94	40.05	40.05	44.92	43.22
At least Ziep	23.90	25.07	26.20	24.50	22.24	24.54	26.04	29.91	29.17	28.33
pass w w 21	23.65	24.75	25.38	24.11	21.87	24.14	26.97	28.89	28.49	27.84
pass ZZ21	0.17	0.74	0.63	0.29	0.16	0.22	0.86	0.80	0.42	0.22
ww21-em	11.90	12.65	12.93	12.22	11.08	12.22	13.90	14.75	14.40	14.12
fall to 11epton category	12.27	12.52	12.14	11.62	10.76	13.54	13.04	12.99	12.88	12.34
ZZ21, DSID	800993	800994	800995	800996	800997	800978	800979	800980	800981	800982
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	92.35	92.38	91.98	90.73	87.54	94.41	94.56	94.45	94.11	93.63
Detector DQ	92.35	92.38	91.98	90.73	87.54	94.41	94.56	94.45	94.11	93.63
Has PV	92.35	92.38	91.98	90.73	87.54	94.41	94.56	94.45	94.11	93.63
2 loose photons	59.89	60.04	59.63	59.11	58.35	63.46	63.58	63.61	63.33	62.62
Trigger match	59.27	59.25	58.55	57.46	55.16	63.09	63.17	63.14	62.80	61.87
tight ID	49.98	50.14	49.17	48.08	45.78	53.39	53.43	53.22	52.85	51.68
isolation	45.90	46.00	44.42	42.29	38.80	49.83	49.88	49.41	48.66	46.80
rel. pT cuts	42.91	42.97	41.25	38.70	34.58	47.48	47.40	46.85	46.02	43.98
m _{yy} in [105, 160]GeV	42.22	42.23	40.22	37.43	33.09	46.95	46.78	45.99	44.92	42.68
b-veto	30.66	30.57	28.53	26.06	22.68	33.10	32.64	31.58	30.64	28.72
At least 2lep	13.68	14.63	17.85	16.51	14.55	12.22	13.08	19.37	19.46	18.42
pass WW21	9.64	6.18	6.58	5.93	5.20	8.72	5.85	6.76	6.58	6.17
pass ZZ21	3.95	8.36	11.15	10.48	9.25	3.39	7.12	12.48	12.72	12.14
WW2l-em	0.11	0.13	0.17	0.18	0.16	0.12	0.10	0.20	0.21	0.21
fall to 1 lepton category	10.88	10.59	6.77	5.98	5.06	12.07	12.17	7.12	6.21	5.84
- repton emegory	10.00	10.07	0.77	0.00	0.00	12.07			0.21	0101

Table 7: Efficiencies in percent for event selection for signals.(Continued)

BDT variables

Following 13 variables are used for WW11 BDT training:

- $\Delta R(j, j)$, the angular difference between two jets.
- $\Delta R(S)$, the angular difference between two bosons from S decay (aka $\Delta R(V, V)$).
- $\Delta R(X)$, the angular difference between *H* and *S* from *X* decay (aka $\Delta R(S, H)$).
- $\Delta R(\ell \nu)$, the angular difference between signal lepton and neutrino from W decay (aka $\Delta R(\ell, E_T^{\text{miss}}))$).
- $\Delta \Phi(\gamma \gamma, \ell_1)$, the polar angle difference between di-photon system and signal lepton.
- $E_{\rm T}^{\rm miss}$, the missing transverse momentum.
- $p_{\rm T}(\gamma\gamma)$, the transverse momentum of the di-photon system.
- $p_{\rm T}(S)$, the transverse momentum of di-jets+ ℓ + $E_{\rm T}^{\rm miss}$ system.
- $p_{\rm T}(jj)$, the transverse momentum of di-jets system.
- $p_{\rm T}(\ell_1)$, the transverse momentum of signal lepton.
- $\Delta m(X, S)$, the mass difference between reconstructed X and S particles.

- $m_W(jj)$, the hadronic W boson system reconstructed from di-jets which has the closet mass to the W boson mass.
- $m_{\rm T}(W_1)$, the transverse mass of the leptonically decay W boson (reconstructed from signal lepton and $E_{\rm T}^{\rm miss}$).

Following variables are used for WW2l BDT training:

- $\Delta R(l, j)$), the angular difference between lepton and jet.
- ΔS , the angular difference between two bosons from S decay (aka $\Delta R(V, V)$).
- ΔX , the angular difference between *H* and *S* from *X* decay (aka $\Delta R(S, H)$).
- $\Delta \Phi(\gamma \gamma, \ell_1)$, the polar angle difference between di-photon system and leading signal lepton.
- $E_{\rm T}^{\rm miss}$, the missing transverse momentum.
- $p_{\rm T}(\gamma\gamma)$, the transverse momentum of the di-photon system.
- $p_{\rm T}(\ell_1)$, the transverse momentum of leading signal lepton.
- $p_{\rm T}(\ell\nu)$, the transverse momentum of $\ell_1 + E_{\rm T}^{\rm miss}$ system.
- $\Delta m(X, S)$, the mass difference between reconstructed X and S particles.
- $m_{\rm T}^{W_1}$, the transverse mass of the leptonically decay W boson (reconstructed from signal lepton and $E_{\rm T}^{\rm miss}$).
- $m_{\ell\ell}$, the invariant mass of di-leptons system.

21 distribution

For 2l, ww1e1m, zz2l regions, the spectrum is clear.

Variable Correlation

Correlation Matrix (background)

All the variables in the BDT has small correlation compared to m_yy.

Correlation Matrix (signal)

Correlation Matrix (signal)

1 lepton bkg: S400 signal

2 lepton bkg: S400 signal

Correlation Matrix (background)

Analysis Team

ANA-HDBS-2021-23-INT1 CDS:2779977

ATLAS Note ANA-HDBS-2021-23-INT1 September 26, 2021

Search for $X \rightarrow SH$ model in the final states of two photons and multiple leptons using 139 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC

Yaquan Fang^a, Kaili Zhang^a, Zhijun Liang^a, Bo Liu^a, Xinchou Lou^{a,c}, Qiyu Sha^a,
 Shuiting Xin^a, Wei-Ming Yao^b
 ^aInstitute of High Energy Physics, Chinges Academy of Sciences, Beijing, Ching

^aInstitute of High Energy Physics, Chinses Academy of Sciences, Beijing, China ^bLawrence Berkeley National Laboratory, USA ^cUniversity of Texas at Dallas, USA

This note presents a search for a new heavy scalar particle X decaying into a Standard Model Higgs boson and a singlet scalar particle S using 139 fb⁻¹ of proton-proton collision data at the centre-of-mass energy of 13 TeV recorded with the ATLAS detector at LHC. The explored

- 14 X mass range varies from 300 GeV to 1000 GeV, with the corresponding S mass range being
- from 170 GeV to 500 GeV. This search uses the event signature of two photons from the Higgs boson decay and one or two leptons (e or μ) coming from the process of $S \rightarrow WW/ZZ$.
- The observed (expected) upper limits at the 95% confidence level on the cross-section for

 $gg \rightarrow X \rightarrow Sh$ is between X fb (133 fb) and Y fb (612 fb).

List of contributions

Yaquan Fang Kaili Zhang	Contact editor, optimisation, supervision of IHEP students Contact editor, optimization, plots production, signal/background estimation, systematics and limit setting
Zhijun Liang Bo Liu	Analysis Optimization for BDT and supervision of Bo Liu Analysis Strategy and editor of the note
Xinchou Lou	Statistics and supervision of Shuiting Xin
Qiyu Sha	signal sample preparation
Shuiting Xin Wei-Ming Yao	Preparation of Samples the optimiazation of BDT analysis and editor of the note

10

Total multi lepton: 8.40.

21/11/25

Background modelling

A RooPlot of "m_H [GeV]"

21 lepton dependance

the derivation between 0I and 2I:

[105, 160]: 3.29% [120, 130]: 0.65%