



## Deep boosted-jet taggers and Hcc measurement

李聪乔 (Congqiao Li), Peking University on behalf of the CMS Collaboration

CLHCP 2021 · Nanjing, China 27 November, 2021

#### CLHCP 2021

#### Deep boosted-jet taggers and Hcc measurement

## Introduction

- → Deep boosted-jet tagging is a new yet promising technique in the LHC experiment
  - deal with traditional jet classification task with the deep neural network
  - boosted jet (*R*=0.8 or 1.5) explores the rich phase-space from the boosted region when decay particles of a resonance merge into one jet
  - able to capture the full correlation of the large-R jet constituents

#### → Boosted-jet tagging in CMS

 include the tagging of t/W/Z/H and BSM particles, decaying to hadrons with different flavours





#### → Higgs to charm coupling measurement

- measuring Higgs couplings with 2nd generation fermions are the next milestone
- ★ the main difficulty to probe the H→cc signal is the charm jet identification
- ★ boosted H→cc jet tagging technique is first explored in CMS and improves the measurement sensitivity

#### → In this talk, we will

- introduce various deep boosted-jet taggers developed in CMS (main focus)
- ◆ present an overall image of the H→cc analysis in CMS, and explain how deep boosted-jet tagger brings the improvement

#### **Boosted event shape tagger (BEST)**

→ BEST: a multi-class tagger to discriminate hadronic decays of high-p<sub>T</sub> t/W/Z/H bosons from jets arising from b/light quarks, and gluons [Phys. Rev. D 94, 094027]

→ Architecture:

- feed-forward NN with 3 hidden layers; 59 nodes as input, 6 nodes as output
- → Input:
  - 59 input features as "boosted event shapes": high-level jet quantities + global features
    - include advanced "event shape" variables: Fox-Wolfram moments; sphericity; aplanarity; thrust ...

→ Performance for all taggers summarized in p.7



#### summary of input variables [JINST 15 (2020) P06005]

| BEST training quantities |                                        |                      |  |  |  |  |  |  |
|--------------------------|----------------------------------------|----------------------|--|--|--|--|--|--|
| Jet charge               | Fox–Wolfram moment $H_1/H_0$ (t,W,Z,H) | $m_{12}$ (t,W,Z,H)   |  |  |  |  |  |  |
| Jet $\eta$               | Fox–Wolfram moment $H_2/H_0$ (t,W,Z,H) | $m_{23}$ (t,W,Z,H)   |  |  |  |  |  |  |
| Jet $	au_{21}$           | Fox–Wolfram moment $H_3/H_0$ (t,W,Z,H) | $m_{13}$ (t,W,Z,H)   |  |  |  |  |  |  |
| Jet $	au_{32}$           | Fox–Wolfram moment $H_4/H_0$ (t,W,Z,H) | $m_{1234}$ (t,W,Z,H) |  |  |  |  |  |  |
| Jet soft-drop mass       | Sphericity (t,W,Z,H)                   | $A_L$ (t,W,Z,H)      |  |  |  |  |  |  |
| Subjet 1 CSV value       | Aplanarity (t,W,Z,H)                   |                      |  |  |  |  |  |  |
| Subjet 2 CSV value       | Isotropy (t,W,Z,H)                     |                      |  |  |  |  |  |  |
| Maximum subjet CSV value | Thrust (t,W,Z,H)                       |                      |  |  |  |  |  |  |
|                          | ЛЛ                                     |                      |  |  |  |  |  |  |



### ImageTop

- → ImageTop: discriminate top vs. QCD jets using the 2D CNN image recognition techniques
- → Architecture:
  - a 2D CNN model:
     preprocess on the low-level input and create a jet image to pass the 2D CNN chain
- → Input: pixelized jet image after preprocessing
- → ImageTop-MD: a mass decorrelated version
  - decorrelate mass dependency by probabilistically removing QCD events to achieve *a same mass spectrum* for the top & QCD input sample





#### **DeepAK8**

→ *DeepAK8*: multi-class classifier for t/W/Z/H tagging based on 1D CNN in ResNet architecture

details in [JINST 15 (2020) P06005]; a widely-used boosted jet tagger in CMS

#### → Architecture:

- two individual 1D CNN chains in ResNet architecture (adding shortcuts across layers) to process low-level features
- → DeepAK8-MD: the mass decorrelated version trained with an "adversarial" architecture
  - added a mass prediction network to predict the jet mass from the learned features
  - adversarial training strategy:
     minimize the joint loss will
     *improve classification accuracy* while *prevent mass correlation*



#### CLHCP 2021

#### **ParticleNet**



- achieve state-of-the-art performance for large-R jet tagging at CMS [CMS-DP-2020-002]
- ParticleNet-MD: The mass-decorrelated version trained with flat (p<sub>T</sub>, mass) distribution
- → Architecture:
  - \* treat a jet as an **unordered set of particles** in the  $\eta$ - $\phi$  space
  - use graph NN which maintains the *permutation-invariant symmetry* (model based on Dynamic Graph CNN (DGCNN) architecture with EdgeConv operation)
- → Input: low-level features of PF candidates / SVs





## Performance in boosted-jet tagging







7

CLHCP 2021



## **DeepAK8 for Hcc measurement**

- → The DeepAK8 tagger explores the merged di-charm phase-space for the first time in analyses
  - ✤ identify H→cc jet while vetoing while bb-/light-flavour jets
  - use a re-trained tagger adapted to R=1.5 jets
  - ♦ eventually fit the soft-drop jet mass to extract the H→cc signal
- → Calibration of the H→cc tagger is crucial to analysis
  - ✤ H→cc/H→bb jet calibrated with the g→cc/g→bb proxy jet, using the QCD multijet sample
  - background jets assigned with a rate parameter extracted from the CR fit
- → Stringent limit on H→cc, with 35.9 fb<sup>-1</sup> data

| 95% CL exclusion limit on $\mu_{VH(H\to c\bar{c})}$ |                                        |                                          |                  |                  |                  |                  |  |  |
|-----------------------------------------------------|----------------------------------------|------------------------------------------|------------------|------------------|------------------|------------------|--|--|
|                                                     | Resolved-jet                           | Merged-jet                               | Combination      |                  |                  |                  |  |  |
|                                                     | $(p_{\rm T}({\rm V}) < 300 {\rm GeV})$ | $(p_{\rm T}({\rm V}) \ge 300 {\rm GeV})$ | 0L               | 1L               | 2L               | All channels     |  |  |
| Expected                                            | $45^{+18}_{-13}$                       | $73^{+34}_{-22}$                         | $79^{+32}_{-22}$ | $72^{+31}_{-21}$ | $57^{+25}_{-17}$ | $37^{+16}_{-11}$ |  |  |
| Observed                                            | 86                                     | 75                                       | 83               | 110              | 93               | 70               |  |  |

- cf. ATLAS [ATLAS-CONF-2021-021], with 139 fb<sup>-1</sup> data
  - ▶ µ<sub>VH</sub>(H→cc) < 26 (31) obs. (exp.)
- → Expect better limit with full Run 2 (139 fb<sup>-1</sup>) data, utilizing a more competent H→cc tagger





signal extraction on the large-R jet mass

### Summary

BDT (high-level inputs)



1D/2D CNN, RNN (low-level inputs)



- → Novel DNN approaches for the boosted-jet tagging open a new era
  - allow direct use of high-dimensional low-level inputs and output multi-class scores
  - can be designed to explore jet substructure and flavour information simultaneously
  - capture the underlying symmetry and physics principles with the dedicated NN model
- → Deep taggers are deployed to an increasing number of CMS analyses
  - ◆ DeepAK8 successfully used in the H→cc measurement, exploring the untouched di-charm phase-space to improve the sensitivity
  - achieve impressive results in various ongoing CMS analyses

# Backup

## ImageTop: details

- → Standardisation of the jet image
  - shift the jet to the origin
  - rotate and flip: major axis in the vertical & maximum intensity is in the lower-left quadrant
  - pixelize into the 37 × 37 grid, with  $\Delta \eta = \Delta \phi = 3.2$

#### ➔ DeepFlavour

- designed for AK4 (R=0.4) b-jet tagging
- ID CNN + RNN (LSTM) network based on the low-level inputs from the charged PF candidates / neutral PF candidates / SVs
- output six scores





## DeepAK8(-MD): details

| Variable                               | Definition                                                                                |                             | Particles                                                                                                           | Particles                                                                                           |                               |
|----------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------|
| variable                               | Demition                                                                                  |                             |                                                                                                                     | <u> </u>                                                                                            |                               |
|                                        | For both charged and neutral particles.                                                   | THE PROPERTY OF DESIGNATION | Convill                                                                                                             | Conv1D                                                                                              |                               |
| $\log p_{\rm T}$                       | logarithm of the particle's $p_T$ SI                                                      | Immary of DeepAK8           | 3,/1,32                                                                                                             | 3,/1,32                                                                                             |                               |
| $\log E$                               | logarithm of the particle's energy                                                        |                             |                                                                                                                     | / V DeepAKa                                                                                         | S(-MD) architecture           |
| $\log(p_{\rm T}/p_{\rm T}({\rm jet}))$ | logarithm of the particle's $p_{\rm T}$ relative to the jet $p_{\rm T}$                   | iput variables              | Conv1D                                                                                                              | Conv1D                                                                                              |                               |
| $ \eta $                               | absolute value of the particle's pseudorapidity                                           |                             | 3,/1,64                                                                                                             |                                                                                                     | a) [CMS_TS_2019_017]          |
| $\Delta \eta$ (jet)                    | difference in pseudorapidity between the particle and the jet axis                        | $MC_TC_2010_0171$           | $\checkmark$                                                                                                        |                                                                                                     | c) [ <u>cm3 13 2013 011</u> ] |
| $\Delta \phi(\text{jet})$              | difference in azimuthal angle between the particle and the jet axis $L^{2}$               | <u>, MJ-1J-201J-011</u>     | Conv1D                                                                                                              | Conv1D<br>3./1.64                                                                                   |                               |
| $\Delta R(\text{jet})$                 | angular separation between the particle and the jet axis                                  |                             | 3,/1,64                                                                                                             |                                                                                                     |                               |
| $\Delta R(\text{subjet } 1)$           | angular separation between the particle and the subjet leading in $p_{T}$                 |                             | × ¥                                                                                                                 | ×+                                                                                                  |                               |
| $\Delta R(\text{subjet } 2)$           | angular separation between the particle and the subleading in $p_{\rm T}$                 |                             | +                                                                                                                   | $\checkmark$                                                                                        |                               |
| $\min \Delta R(SV)$                    | angular separation between the particle and closest secondary vertex                      |                             | ¥ III                                                                                                               | / Conv1D                                                                                            |                               |
|                                        | PUPPI weight of the particle                                                              |                             | Conv1D<br>3./1.64                                                                                                   | 3,/1,64                                                                                             |                               |
| a a                                    | electric charge of the particle                                                           |                             |                                                                                                                     |                                                                                                     |                               |
| y<br>igMuon                            | if the particle is identified as a muon                                                   |                             | Conv1D                                                                                                              | $\left\langle \begin{array}{c} \text{ConvID} \\ 3./1.64 \end{array} \right\rangle$ (SV)             |                               |
| igElectron                             | if the particle is identified as an electron                                              |                             | 3,/1,64                                                                                                             |                                                                                                     |                               |
| isPhoton                               | if the particle is identified as a photon                                                 |                             | $\checkmark$                                                                                                        | Conv1D                                                                                              |                               |
| ISPHOLOH<br>I Change Mark              | if the particle is identified as a photon                                                 |                             | Conv1D                                                                                                              | + 3,/1,32                                                                                           |                               |
| 1schargedHadron                        | If the particle is identified as a charged hadron                                         |                             | 3,/1,32                                                                                                             |                                                                                                     |                               |
| isNeutralHadron                        | if the particle is identified as a neutral hadron                                         |                             | ✓ ¥ / ¥                                                                                                             | Conv1D Conv1D                                                                                       |                               |
| J <sub>HCAL</sub>                      | fraction of energy deposited in HCAL                                                      |                             | $\begin{pmatrix} \text{Conv1D} \\ 3/2 & 64 \end{pmatrix}$ $\begin{pmatrix} \text{Conv1D} \\ 3/1 & 32 \end{pmatrix}$ | 3,72,04                                                                                             |                               |
| For                                    | r charged particles only. A default value of 0 is assigned for neural particle.           |                             |                                                                                                                     | Conv1D Conv1D                                                                                       |                               |
| pvAssociationQuality                   | flag related to the association of the track to the primary vertices                      |                             | Conv1D Conv1D                                                                                                       | 3,/1,64                                                                                             |                               |
| lostInnerHits                          | quality flag of the track related to missing hits on the pixel layers                     |                             | 3,/1,64                                                                                                             |                                                                                                     |                               |
| $d_{xy}$                               | transverse impact parameter of the track                                                  |                             |                                                                                                                     | * + * +                                                                                             |                               |
| $d_z$                                  | longitudinal impact parameter of the track                                                |                             | ×+ ×+                                                                                                               | ¥ ¥                                                                                                 |                               |
| $d_{xy}/\sigma_{d_{xy}}$               | significance of the transverse impact parameter                                           |                             | ✓ ✓ ✓ ✓                                                                                                             | $\begin{pmatrix} Conv1D \\ 3./1.64 \end{pmatrix}$ $\begin{pmatrix} Conv1D \\ 3./1.32 \end{pmatrix}$ |                               |
| $d_z/\sigma_{d_z}$                     | significance of the longitudinal impact parameter                                         |                             | Conv1D Conv1D                                                                                                       |                                                                                                     |                               |
| $\chi^2/dof$                           | $\chi^2$ value of the trajectory fit normalized to the number of degrees of freedom       |                             | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                              | Conv1D Conv1D                                                                                       |                               |
| qualityMask                            | quality flag of the track                                                                 |                             | Conv1D Conv1D                                                                                                       | 3,/1,64 3,/1,32                                                                                     |                               |
| $\operatorname{cov}(q/p, q/p)$         | variance of the track parameter $q/p$                                                     |                             | 3,/1,64                                                                                                             | <u>↓</u> <u>↓</u>                                                                                   |                               |
| $\operatorname{cov}(\lambda,\lambda)$  | variance of the track parameter $\lambda$                                                 |                             |                                                                                                                     |                                                                                                     |                               |
| $\operatorname{cov}(\phi, \phi)$       | variance of the track parameter $\phi$                                                    |                             | * *                                                                                                                 |                                                                                                     |                               |
| $\operatorname{cov}(d_{ru}, d_{ru})$   | variance of the track parameter $d_{ry}$                                                  |                             |                                                                                                                     | 3,/2,128 Conv1D                                                                                     |                               |
| $\operatorname{cov}(d_z, d_z)$         | variance of the track parameter $d_{z}$                                                   |                             | Conv1D Conv1D                                                                                                       |                                                                                                     |                               |
| $\operatorname{cov}(d_{xy}, d_z)$      | covariance of the track parameter $d_{ru}$ and $d_{z}$                                    |                             | 3,72,128                                                                                                            | Conv1D Conv1D                                                                                       |                               |
| $cov(\phi, d_{rru})$                   | covariance of the track parameter $\phi$ and $d_{m}$                                      |                             |                                                                                                                     | 3,/1,128 3,/1,64                                                                                    |                               |
| $\operatorname{cov}(\lambda, d_z)$     | covariance of the track parameter $\lambda$ and $d_z$                                     |                             | 3,/1,128                                                                                                            |                                                                                                     |                               |
| $\eta_{\rm rel}$                       | pseudorapidity of the track relative to the jet axis                                      |                             | $\checkmark$                                                                                                        |                                                                                                     |                               |
| $p_{\rm T rol}$ ratio                  | track momentum perpendicular to the jet axis, divided by the magnitude of the track mo    | mentum                      | ×+ ×+                                                                                                               | Conv1D Conv1D                                                                                       |                               |
| p <sub>par rel</sub> ratio             | track momentum parallel to the jet axis divided by the magnitude of the track mome        | ntum                        |                                                                                                                     | 3,/1,128 3,/1,64                                                                                    |                               |
| dap                                    | signed 2D impact parameter (i.e., in the transverse plane) of the track                   |                             | Conv1D Conv1D                                                                                                       |                                                                                                     |                               |
| $d_{\rm 2D}/\sigma_{\rm 2D}$           | signed 2D impact parameter significance of the track                                      |                             | 3,/1, 128 3,/1, 64                                                                                                  | Conv1D Conv1D                                                                                       |                               |
| dan                                    | signed 3D impact parameter of the track                                                   |                             | V V                                                                                                                 | 3,71,128                                                                                            |                               |
| $d_{ap}/\sigma_{ap}$                   | signed 3D impact parameter significance of the track                                      |                             | 3,/1,128                                                                                                            |                                                                                                     |                               |
| trackDistance                          | distance between the track and the jet axis at their point of closest approach            |                             |                                                                                                                     | $\checkmark$                                                                                        |                               |
|                                        | v 1 11                                                                                    |                             | * + +                                                                                                               | Global Global                                                                                       |                               |
| Т                                      | Table 5.2. Input variables of each jet constituent particle                               |                             | $\checkmark$ $\checkmark$                                                                                           | average pool average pool                                                                           |                               |
| 1                                      | able 5.2. Input variables of each jet constituent particle.                               |                             | Global Global                                                                                                       |                                                                                                     |                               |
|                                        |                                                                                           |                             | average pool average pool                                                                                           | Concatenate                                                                                         |                               |
| Variable                               | Definition                                                                                |                             | XK                                                                                                                  | KY                                                                                                  |                               |
| $\log p_{\rm T}$                       | logarithm of the SV's $p_{\rm T}$                                                         |                             | Concatenate                                                                                                         | FC FC                                                                                               |                               |
| $\log E$                               | logarithm of the SV's energy                                                              |                             | ¥                                                                                                                   | 256, SeLU 256, SeLU                                                                                 |                               |
| $\log(p_{\rm T}/p_{\rm T}({\rm jet}))$ | logarithm of the SV's $p_{\rm T}$ relative to the jet $p_{\rm T}$                         |                             | FC                                                                                                                  | ¥ ¥                                                                                                 |                               |
| $ \eta $                               | absolute value of the SV's pseudorapidity                                                 |                             | 512, ReLU                                                                                                           | 256, SeLU 256, SeLU                                                                                 | Feature extraction            |
| $\Delta \eta$ (jet)                    | difference in pseudorapidity between the SV and the jet axis                              |                             | ¥                                                                                                                   | <b>V</b>                                                                                            | reature extraction            |
| $\Delta \phi(\text{jet})$              | difference in azimuthal angle between the SV and the jet axis                             |                             | DropOut                                                                                                             | FC FC                                                                                               | Category prediction           |
| $\Delta R(\text{jet})$                 | angular separation between the SV and the jet axis                                        |                             | p=0.2                                                                                                               | 256, SeLU 256, SeLU                                                                                 | Cutegory prediction           |
| $m_{ m SV}$                            | mass of the SV                                                                            |                             | ¥<br>FC                                                                                                             | ¥ ¥                                                                                                 | Mass prediction               |
| N <sub>tracks</sub>                    | number of tracks associated with the SV                                                   |                             | 17, Softmax                                                                                                         | FC FC<br>17. Softmax 22 Softmax                                                                     |                               |
| $\chi^2/dof$                           | $\chi^2$ value of the SV fit normalized to the number of degrees of freedom               |                             | ¥                                                                                                                   |                                                                                                     | ·                             |
| $d_{2D}$                               | signed 2D impact parameter (i.e., in the transverse plane) of the SV                      |                             | Truth Cross-entropy                                                                                                 | Truth Cross-entropy Cross-entropy Mass                                                              |                               |
| $d_{\rm 2D}/\sigma_{\rm 2D}$           | signed 2D impact parameter significance of the SV                                         |                             | label loss                                                                                                          | label loss loss label                                                                               |                               |
|                                        | signed 3D impact parameter of the SV                                                      |                             |                                                                                                                     |                                                                                                     |                               |
| $d_{3D}/\sigma_{3D}$                   | signed 3D impact parameter significance of the SV                                         |                             | (-)                                                                                                                 |                                                                                                     |                               |
| $\cos(\vec{p}_{SV}, (PV, SV))$ cosin   | ie of the angle between the SV momentum and the vector pointing from the primary vertex t | o the SV                    | (a)                                                                                                                 | (b)                                                                                                 |                               |

Table 5.3: Input variables for each secondary vertex (SV) inside the jet.

Figure 5.4: The network architecture of (a) DeepAK8 and (b) DeepAK8-MD.

## **Data/MC comparison**

data/MC comparison on single-µ samples [JINST 15 (2020) P06005]





→ SM (Herwig) shows the MC prediction using Herwig (instead of Pythia) for hadronization



ImageTop(-MD)



Dutput 2 min (refinal) 3 ministra is n light is minist 

### DeepDoubleX(-MD)

- → **DeepDoubleX** (V1): a bb/cc-flavour tagger based on 1D CNN+GRU [CMS-DP-2018-046]
  - NN similar with DeepJet (for R=0.4 jet tagging) architecture [JINST 15 (2020) P12012]
  - MD version: introduce additional "adversarial loss" in training: use KL divergence to quantify the shape difference
- → Architecture:
  - separate 1D CNNs to process low-level features + gated recurrent units (GRU) applied after CNNs to handle the variablelength sequence
- → Inputs: low-level features from PF candidates / SVs and global features

#### → Model upgraded to V2:

- optimize and add more input features; drop irrelevant features to shorten inference time
- A achieve up to 40% improvement from the V1 performance

