

Status of CMS Phase-II Upgrade

Dayong Wang

Peking University
On behalf of CMS-China

The 7th China LHC Physics Workshop (CLHCP2021) 2021.11.28

HL-LHC upgrade, challenges and CMS solution

Expected pileup (PU): ~140-200

- Improved granularity wherever possible
- in-time Pile Up mitigation: Precision Timing detectors (30ps)
- Trigger and DAQ: better selectivity, despite high PU.

Radiation damage / accumulated dose in detectors and onboard electronics=> a progressive degradation

- => Maintain performance in harsh conditions:
- Replacement of the Tracker and Endcap Calorimeter systems.
- Electronics overhaul and consolidation of the Barrel Calorimeters and Muon systems

CMS Phase-II upgrades

2019-2026, matching HL-LHC, basis for future physics!

Replacements of existing system/detector

Electronics upgrade/replacement New detector

This talk focuses on: Projects with major CMS-China contributions

CMS-GEM Upgrade Project

GEM (Gas Electron multipliers) Upgrade (2016-2026)

Tasks by CMS-China in GEM Upgrade

PKU+THU+SYSU+BUAA

Innermost ring ME0 GEM

GE2/1 demonstrator just installed

Upgrade GEM		GE1/1	GE2/1	ME0
Number of GEMs*		288 (=2×36×4)	288 (=2×18×8)	216 (=2×18×6)
Plan	R&D	2013-2017	2014-2020	2014-2022
	Mass-Production	2017-2019	2020-2022	2022-2024
	Install. & Commi.	2018-2021	2022-2024	2024-2026
Tasks of Chinese Group		Prod. & Test of all GEB in China, GEM Assembly & Test, Install. & Commission at CERN	Design & Prototyping of GER, Assembly. & Test of ~1/8 GEM in China, Install. & Commission at CERN	Design & Prototyping of GEB, Assembly. & Test of ~1/5 GEM in China, nstall. & Commission at GERN
GE1/1 see beams! Monika Mittal's talk			CENT	

* (Total Num.=Num. of stations \times Num. Of module /station \times Num. of GEMs /module) 2021/11/28 CMS Phase-II Upgrade Status

Annual progress

5

Design and Prototyping of GE2/1 GEB

GE2/1 GEB: Design, R&D, Production and Test by Chinese Group (GE2/1 M1-M8 GEB).

During 2020-2021, three versions of 8 types GE2/1 GEB (~20 sets) were designed and produced in Shenzhen Sinofast Ltd. The prototypes were qualified and validated by the test in USA and CERN. Better performance than GE1/1 GEB (designed by ULB) was observed.

1165.4(880)mm 520.7mm

4 types of (M1-M4) GEB 2/1 prototypes

R&D and Mass Production of GE2/1 GEB

- Jan. 20, 2021: GEM GE2/1 ESR Review Meeting was hold at CERN, the presentations on GEB design, test and production plan by PKU group were reviewed and validated. Main comment: Halogen free materials should be used on all PCB and components.
- Jun.-July 2021: first batch of 6 halogen free GE2/1 M1 GEB were produced and shipped to CERN, shown satisfactory test results.
- Oct. 2021: mass production of GE2/1 M1-M4 GEB (~160 sets) started, expected to be completed and shipped to CERN by early 2022, meanwhile start M5-M8 GEB production (~160 sets).

Design and R&D of ME0 GEB

- July 2020: the design of the 1st version of ME0 GEB by PKU group was completed; reviewed and validated by CMS-GEM collaboration:
- Dec. 2020: the 1st prototypes of 7 sets produced (delayed by Covid-19), shipped to CERN&USA in Feb. 2021, shown excellent test results.
- later 2022: mass production is expected to start.

External Frames and SM Structures

GEM External Frame: fabricated with FR4 materials with very high precision (tolerance on thickness < 0.03 mm)

- Start test production in 2019 in China, approved by CMS-GEM review committee in Jun. 2020;
- May 2021: production of all GE2/1 FR4 external frames (320 sets) completed, tested and shipped to CERN
- Screen and supporting structure of GE2/1
 Super-Module: 2 types (~1×2m²) holds 8
 GEM chambers (M1-M8), providing
 mechanical support, insulation, screening
 - Apr. 2021: start facility update and test production. Two sets of prototypes produced in Oct. and passed QC.
 - ~early 2022: start mass production (~40 sets)

GEM FR4 ext. frames produced

Prototypes of screen and supporting structure of GE2/1 Super-Module

PKU Production Site and activities at CERN

- PKU GEM assembly and QC laboratory ready, with cleanroom and hardware/software platforms
- Mar. 2021: PKU GEM Lab. passed the review of CMS-GEM collaboration, becomes one of the official CMS-GEM production sites.
- Jun.-Sept. 2021: PKU members participated the assembly and test of GE2/1 M1 GEM at CERN,
- ~mid 2022: start production of GE2/1 M5 GEM (~40 chambers) in PKU.

Test of Full-size GE1/1 GEM at PKU lab.

More details in Aera Jung's talk

RPC Upgrade Project

RPC/iRPC TRIG/Backend Electronics

trigger

Backend demonstrator: fw and sw

Before joint test with iRPC/FEB, Emulator system were developed and tested to check full functionalities of BE/Trigger.

See SONG Jianing's talk

- Fast control/TTC
- Slow Control/SC
- Readout/DAQ
 - Data driven readout
- Trigger Primitives
- FE also emulated
 - Check-Sort-Push Mechanism

Test working in April/May

iRPC FEE-BE/Trigger Joint test

FEE Emulator ,FEB and BE Joint test system was set up in 904 since July 2021.

Preliminary results shows that BE/Trigger can configure and readout data correctly from iRPC FEB.

GBT Signal Link **BEB** Server **FEB** Generator 10GbE

Test signal frequency measurement

Petiroc threshold scan after calibration

Delay Line

Fan-out output signal

FEB Injection signal

Oscilloscope confirms the delay

FEB Injection board

Time measurement by adjusting delay line

Time resolution of FEB TDC

MTCA Mini-Production for installation

See ZHAO Jingzhou's talk

- Finished Mini-Production for 2022/23 Installation done.
- MicroTCA Qualification OK.
- Ready for transportation to CERN .

HGCal Design and Parameters

Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 28 layers, 25.5 X_0 & ~1.7 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 22 layers, ~9.5 λ (including CE-E)

16

Major task for China HGCal: MAC

Module Assembly Centers (MAC): IHEP, NTU, Indian, UCSB, TTU, CMU ~5200 modules per MAC

Since first silicon module(6 inch) in 2016, IHEP has close collaboration with UCSB and participate ~20 module assembly

Cost: 69 M CHF
IHEP MAC will produce >
100 m² silicon module

Production chain at IHEP MAC set up and qualified

componat tests

Module assembly

Wire bonding

encapsulation

Module testing

Cleanroom status

- Cleanness
- Temperature
- Humility

18

- Clean room and major equipment are installed, operator trained
- · Fixture for gantry, wire bonder, pull tester, encapsulation are fabricated
- Glue parttern for assemly, encapsulation and wire bonding code are tested
- Go through full production chain for the first time on real componats (next slide)

Silicon module assembly centres:

MACs qualified (UCSB, IHEP, and NTU), are close (CMU and TTU), and TIFR

- SiPM market survey closed. Moulded tile prototyping well advanced. Machined cast tile prototypes made and under test, and tileboards development and test advancing well
- SiPM-on-Tile light yield results consolidated from different tests. Inputs collected for the optimization of the overall layout, and calibration procedure being studied for end-of-life with lower S/N
- · Tilemodule assembly: automated tile wrapping and tilemodule assembly equipment is working in the TACs
- HGCROCv3 is under test and the analogue results very encouraging, some issues with new digital elements to be understood, and packaging has suffered delays
- ECON-T-P1 submitted. ECON-D design well advanced realistic. ECON-T-P2 planned. ECON design and verified depth of the team

now has a green light to order a g

Details in Yong Liu's talk

HGC project manager's site qualification report to P2UG

Production of 2 functional 8 inch module

- Successfully build 2 8 inch HGCal silicon module
 - HGC first functional 8" silicon module
 - Latest HGCROC ASICs
 - Low noise (~2-3ADC)
 - IHEP news report
- Both modules tested by test beam
 - 2021-9 test first module at CERN beam: IHEP moduleoo1
 - 2021-10 test second module at CERN beam: IHEP module 002

Noise with/w.o. sensor

original hist

orig - noise

noise: mirrored left tail

FE ASIC/module/beam test at CERN

- ~130 HGCROC2 chips tested in April
- ~20 hexaboards received and tested in end of June
 - IHEP produce modules use these hexaboards
- Prepare 2021 Sept. Oct. Beam test, take shifts, and data analysis
- Develop hexaboard tests framework for MACs

A. Kapoor E. Chapon

F. Monti

Full module

- Complex HGCAL geometry at CMS endcap regions: extra challenges
 - Equipped with both full (hexagonal) modules and partial modules
 - Zhejiang University team: design half modules

CMS timing detector MTD

CMS-China officially joined MTD in 2021

- PKU, <u>BUAA</u> and <u>THU</u> joined MTD barrel (BTL) studies which uses LYSO+SiPM
- <u>USTC</u> plans to join the MTD endcap (ETL) studies which uses LGAD
- Actively communicated with MTD collaboration, built local labs, set up testing bench, and already made contributions to SiPM testing

Peking University climate chamber

Peking University, thermal cycling

Output

Description:

More details in Xiaohu Sun's talk

Summary

- CMS Phase-II upgrade projects are fully launched and progress well, with many important contributions from CMS-China
- GEM:
 - GE1/1 fully installed, commisioned and see the first beam;
 - GE2/1 GEB designed and validated by CMS-China and 1/8 chamber production and QC in China to start soon;
 - MEo under prototyping, with both electronics and chamber
- iPRC electronics and trigger
 - Backend/Trigger development done and verified with emulator system;
 - First step of joint test with iRPC/FEBV2 is successful;
 - Data readout tested with FEE injection system and further test ongoing
- HGCAL
 - Passed IHEP MAC site qualified, silicon module production developed;
 - CMS first 2 8 inch silicon module built at IHEP, validated by CERN test beam;
 - Half-exaboard PCB Designed by ZJU team
- MTD: new contributions from CMS-China, local lab set up