CEPC timing detector R & D --AC-coupled LGAD for 4D tracking

Zhijun Liang (梁志均) on behalf on IHEP-HGTD team (IHEP, Chinese Academy of Sciences)

Institute of High Energy Physics Chinese Academy of Sciences

CEPC timing detector : motivation > CEPC will produce 10¹² Z boson at Z pole → Rich flavor physics program > Gas detector is responsible for particle identification in flavor (dE/dx) → Challenge: 0.5-2GeV for K/pi separation, >1.5GeV for K/p separation > Timing detector is complementary to gas detector → 0-4GeV for K/pi separation, 0-8GeV for K/p separation

Timing detector: Between tracker and calorimeter \rightarrow TOF Close to outer tracker, Radius ~1.8m Target time resolution: 50 pico-second(ps) New proposal: TOF+ outer layer tracker= 4D detector \triangleright Target spatial resolution: 7~10 µm **Baseline detector concept in CDR**

CEPC timing detector : Concept

Timing detector in Barrel region

Introduction of Low-Gain Avalanche Detectors (LGAD)

DC-LGAD

- aAplication: LHC, CEPC TOF
- The DC readout
- Time resolution ~ 30ps
- Position resolution: ~1mm
- Dead zone : ~ 0.1mm

AC-LGAD

Application: CEPC TOF +SET (4D tracker)
AC coupled readout
Time resolution ~ 30ps
Position resolution: 10-50 um
Dead zone : 0 mm (no dead zone)

Introduction of AC-LGAD (2)

DC-LGAD

- CEPC application: **TOF**
- Cross-talk: no
- Dead zone : ~0.1mm

AC-LGAD • CEPC application: TOF +SET (4D tracker) Cross-talk: can be adjusted • Dead zone : 0 mm (no dead zone)

AC-LGAD prototype for CEPC • First AC-LGAD prototype in China by IHEP-IME in 2021. > Try different sensor geometry and doping

Sensors	N+ dose [unit]	Sensor size [µm]	AC-pad size [µm]	Picth size [µm]
W7Q1	10	1000	1000	2000
W5Q1	5	2000	1000	2000
W5Q2	1	2000	1000	2000
W5Q3	0.5	2000	1000	2000
W5Q4	0.2	4000	1000	2000

•AC-LGAD first proposed by INFN in RD50, and first fabricated by FBK.

\triangleright Choose this large pitch geometry \rightarrow save readout channels

4-A1

Laser testing for AC-LGAD

- Pico-second laser testing for AC-LGAD
- 4 channels readout board with fast amplifiers (~2GHz)
- 3D X-Y-Z stage platform (precision : ~1um)

Pico-second laser setup

X-Y-Z platform

D mplifiers (~2GHz) n)

4 channels fast readout board

Laser testing for AC-LGAD

- Pico-second laser testing for AC-LGAD
- 4 channels readout board with fast amplifiers (~2GHz)
- 3D X-Y-Z stage platform (precision : ~1um)
- the ballistic deficit of the signal is smaller in large AC pads

Laser shooting in the middle 4 channels has similar signal amplitude

Laser shooting in the upper right Upper right channel has larger amplitude

	1
D	
D	
\frown	
\times	ĺ
9 1	0
ne [ns]	

Laser testing for AC-LGAD: Readout and spatial reconstruction Position reconstruction by Discretized Positioning Circuit model (DPC)

> Input is 4 channels signal amplitude

$$X = X_0 + k_x \left(\frac{q_A + q_B - q_C - q_D}{q_A + q_B + q_C + q_D}\right) = X_0 + k_x m$$
$$Y = Y_0 + k_y \left(\frac{q_A + q_D - q_B - q_C}{q_A + q_B + q_C + q_D}\right) = Y_0 + k_y n$$

$$k_x = L \frac{\sum (m_{i+1} - m_i)}{\sum (m_{i+1} - m_i)^2} \qquad k_y = L \frac{\sum (n_{i+1} - n_i)}{\sum (n_{i+1} - n_i)^2}$$

Signal attenuation Vs N+ layer doping

Lower n+ doping, higher resistance

Spatial resolution depends on the resistance of n+ layer Higher Signal attenuation, better spatial resolution Try 5 different n+ doping in one engineering run

Laser testing for AC-LGAD: spatial resolution Resolution extracted from residual difference from hit position

- and reconstructed position
- The resolution can reach 15µm (2000µm pitch)

Sensor size	AC-pad size]	Picth
4000 µm	1000µm	2000

Spatial resolution

size

hit position vs Reconstructed position

Laser testing for AC-LGAD: spatial resolution

- Lower n+ layer doping, better spatial resolution
- The best resolution can reach 15µm (2000µm pitch)
- Has potential to improve to 5µm in future (improving S/N)

Spatial resolution VS n+ dose

olution Oum pitch) e (improving S/N)

Laser testing for AC-LGAD: timing resolution

- The timing resolution is about 20~30 ps

The N+ dose and different size of the pads has little impact on timing resolution

Summary

AC-LGAD is a new 4D detector (position + time)
First AC-LGAD prototype by IHEP is successful
Picosecond laser test and reconstructed by DPC model
The spatial resolution in laser test ~15µm (2000µm pitch)
Potential to reach to 5µm resolution in future
Timing resolution 20~30 ps

Low-Gain-Avalanche-detector

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNo}^2$$

Landau Noise term:

Signal fluctuation due to non-uniform charge deposition Minimized by reducing thickness of the sensor (50um)

$$\sigma_{jitter}^2 = \left(\frac{t_{rise}}{S/N}\right)^2$$

Jitter

Time walk

Need gain to increase S/N

Need thin detector to decrease t_{rise}

$$\sigma_{timewalk}^2 = \left(\left[\frac{V_{thr}}{S/t_{rise}} \right]_{\rm RMS} \right)$$

Corrected using the amplitude estimate with the time over threshold (TOT).

[1] G. Pellegrini et al., NIM A765 (2014) 12
[2] H.-W. Sadrozinski et al., arXiv: 1704.08666
[3] F. Cenna et al, NIM A796 (2015) 149-153

oise + $\sigma_{Distortion}^2$ + σ_{Jitter}^2 + σ_{TDC}^2

fixed threshold

Low-Gain-Avalanche-detector

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNo}^2$$

Landau Noise term:

Signal fluctuation due to non-uniform charge deposition Minimized by reducing thickness of the sensor (50um)

$$\sigma_{jitter}^2 = \left(\frac{t_{rise}}{S/N}\right)^2$$

Jitter

Time walk

Need gain to increase S/N

Need thin detector to decrease t_{rise}

$$\sigma_{timewalk}^2 = \left(\left[\frac{V_{thr}}{S/t_{rise}} \right]_{\rm RMS} \right)$$

Corrected using the amplitude estimate with the time over threshold (TOT).

[1] G. Pellegrini et al., NIM A765 (2014) 12
[2] H.-W. Sadrozinski et al., arXiv: 1704.08666
[3] F. Cenna et al, NIM A796 (2015) 149-153

oise + $\sigma_{Distortion}^2$ + σ_{Jitter}^2 + σ_{TDC}^2

fixed threshold

Outlook: Testbeam with ATLAS HGTD module

► Time resolution: 45ps Position resolution: ~1mm Area : 6.5mm*6.5mm --> (2cm*4cm)

CEPC timing detector : Concept ≻ Each module size : ~5cm * 15cm ≻ Further optimization is on going

Flexible cable Flexible cable +carbon fiber structure

ASIC Readout chip

LGAD sensors