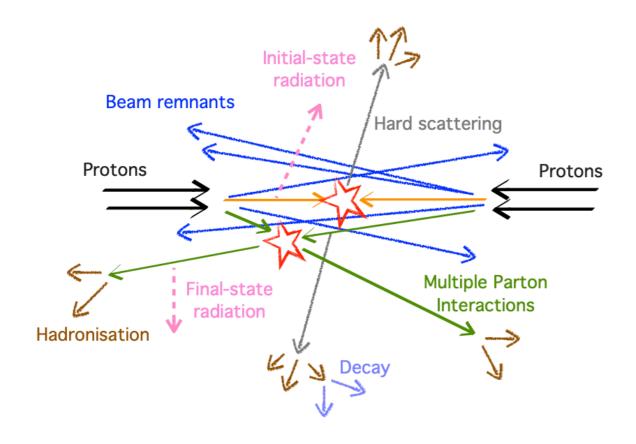
CLHCP 2021

The 7th China LHC Physics Workshop

Multiplicity dependence of Υ production at forward rapidity in pp collisions at $\sqrt{s}=13$ TeV with ALICE

Yanchun Ding^{1,2} for the ALICE Collaboration

Central China Normal University¹, Institut de Physique des Deux Infinis de Lyon²

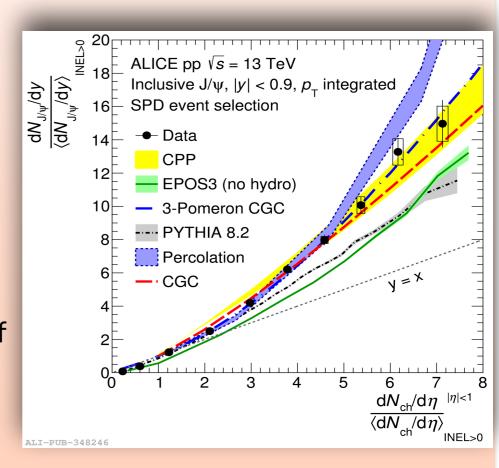

Nov. 25 - 28, 2021

PHYSICS MOTIVATIONS

Quarkonium: bound state of $c\bar{c}$ [e.g. J/ ψ and $\psi(2S)$] or $b\bar{b}$ pair [e.g. $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$]

<u>Charged-particle multiplicity</u>: the number of primary charged particles produced in the collisions in a given pseudorapidity window

Charged-particle multiplicity dependence to study:

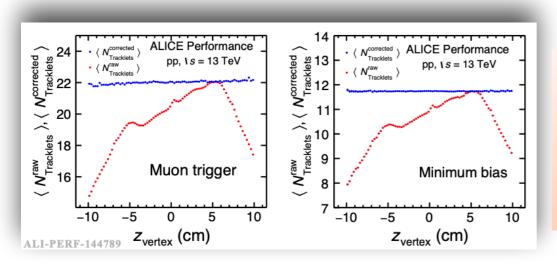

- Particle production mechanisms, such as Multiple Parton Interactions (MPI, several parton-parton interactions occurring in a single pp collision)
- Interplay between soft and hard processes

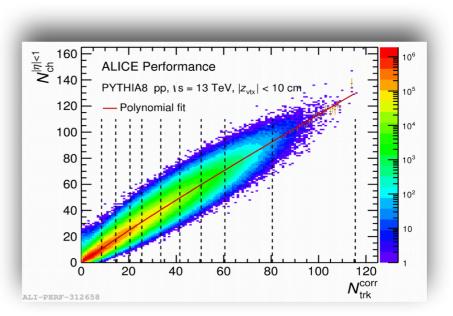
PHYSICS MOTIVATIONS

Comprehensive studies performed by ALICE Collaboration on charmonium production as a function of multiplicity[1]

- > J/ ψ production at mid-rapidity increases faster than a linear scaling with multiplicity
- > The trend of the data is fairly reproduced by various models :
 - CPP: Coherent Particle Production
 - CGC: Color Glass Condensate, gluon saturation
 - 3-Pomeron CGC: 3-gluon fusion
 - EPOS 3: parton ladders, no hydrodynamic component
 - PYTHIA 8.2: MPI
 - Percolation: color strings overlapping
- The increasing behavior in models arises from the reduction of multiplicity
- All models, except PYTHIA 8.2, only consider prompt J/ψ contribution

[1] ALICE Collaboration, Phys. Lett. B (2020) 135758

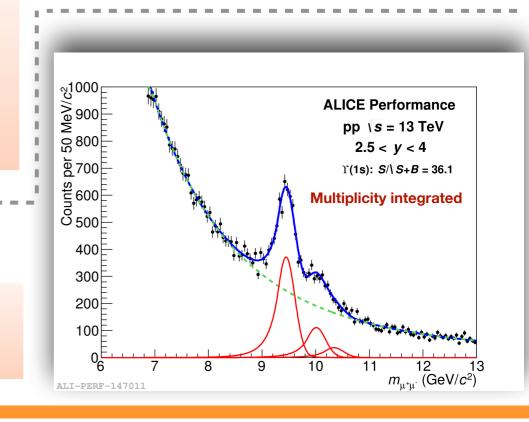

ANALYSIS STRATEGY



Multiplicity estimation – SPD tracklets in $|\eta|$ < 1

I. Equalization along the interaction vertex z direction (z_{vertex})

➤ Equalize the number of tracklets variation as a function of z_{vertex} on an event-by-event basis

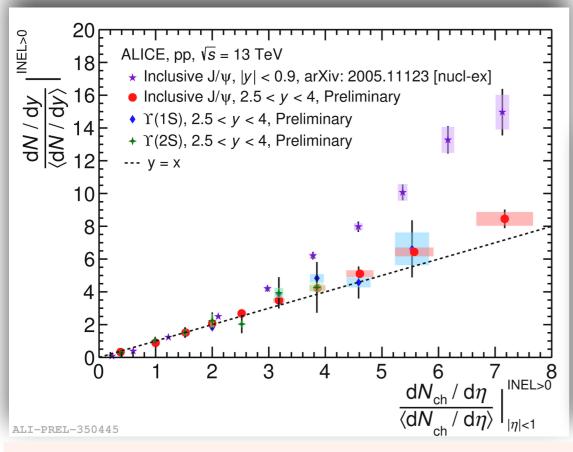

II. Tracklet to charged-particle multiplicity conversion

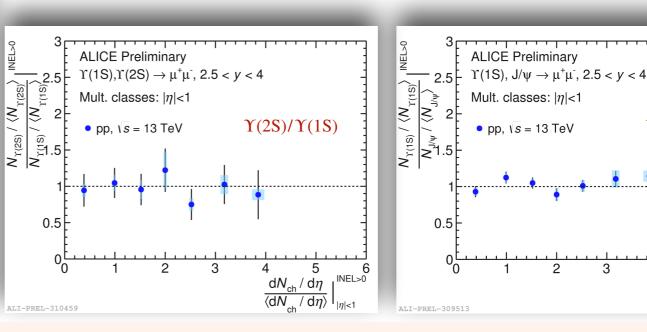
$$\langle N_{\rm ch} \rangle = f(\langle N_{\rm trk}^{\rm corr} \rangle)$$

Based on Monte Carlo simulations which reproduce the realistic detector status

Signal extraction

- \triangleright Clear $\Upsilon(nS)$ signal peaks are observed at forward rapidity
- > A combined fit is applied to disentangle signals and background


RESULTS


Self-normalized $\Upsilon(nS)$ and J/ψ yields as a function of multiplicity

Charged-particle multiplicity is measured at mid-rapidity

- \succ A linear increase is observed for Υ states and J/ ψ at forward rapidity
- \rightarrow A faster than linear increase is shown for J/ ψ at mid-rapidity

Double yield ratios of $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(1S)/J/\psi$ as a function of multiplicity

- \succ The double ratio of $\Upsilon(2S)$ over $\Upsilon(1S)$ is independent of multiplicity and compatible with unity within uncertainties
- \succ The double ratio of $\Upsilon(1S)$ over J/ ψ is found to be unity irrespective of multiplicity within uncertainties
- > No dependence on resonance mass and quark component
- > The data sample for the analysis has been increased by a factor of 3 in preparation of a publication

 $\Upsilon(1S)/J/\Psi$

 $\mathrm{d}N_\mathrm{ch}$ / $\mathrm{d}\eta$