

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Measurements of Higgs boson production cross-sections and couplings in the diphoton decay channel at 13 TeV

Muhammad Aamir Shahzad

IHEP CAS, Beijing

CLHCP 2021, 25 Nov. - 28 Nov. 25.11.2021

Higgs Boson decaying into γγ

- > At LHC, $H \rightarrow \gamma \gamma$ channel plays a key role first in the **discovery of the Higgs boson**, and then in the **measurements of Higgs boson properties** and also in **searches for new physics**
- Loop-induced decay
 - Interference helps probe sign of couplings to SM particles
 - ✓ New physics could contribute to the loop
- Small branching fraction (0.2%), but clean final state with two highly energetic and isolated photons, so final state can be fully reconstructed with excellent mass resolution (1-2%)

Large backgrounds

- Continuum γγ (irreducible)
- Fakes from γj and j j (reducible)
- Measurement of Higgs boson production cross-section and couplings in the diphoton decay channel with full Run2 data at 13 TeV, Published in JHEP (JHEP07(2021)027)
 - PAS was public with 2017 re-reco data and in paper, results were updated with UL2017 data

Search for a narrow peak on a larger falling background in mass distribution

STXS Framework

- STXS provides a framework for making Stage 1.2 measurements in increasingly finer bins of the Higgs boson phase space
 - $\checkmark\,$ STXS bins are mutually exclusive
 - ✓ Bins of phase space are split by production mode and further by kinematic variables within each production mode
- Maximize experimental sensitivity
- Less dependence of measurements on theory
- BSM physics is isolated in a separate bin
- Coherence allows for decay channels to be combined
- Fine bins => allow for broader re-interpretations by theorists
- STXS framework developed in stages: stage 1.0, stage 1.1, stage 1.2
- STXS stage 1.0 analysis (2016+2017) in HIG-18-029

Categorisation: targeting STXS Stage 1.2 binning

- ggH categorization: New multiclassifier to assign most probable STXS bin
- VBF categorization: Data-driven technique + Three-Class BDT
- VH hadronic categorization: Data-driven technique + VH hadronic tag
- VH leptonic categorization: WH leptonic, ZH leptonic, VH MET MVA + data-driven technique for VH MET
- ttH and tH categorization: ttH leptonic and hadronic tags from HIG-19-013, tHq tag

Analysis Strategy

VH MET

tag

- Analysis is targeting ggH, qqH (VBF and VH hadronic), ttH and tH, VH leptonic Stage 1.2 STXS bins
- In each production mode categories are defined to target as many STXS bins as possible. Categories are divides depending on available statistics
- Build analysis categories to target as many STXS bins as possible
- MVAs are used to reduce the contamination from other H production modes and also for Background reduction
- Simultaneous fit to the diphoton invariant mass distributions in all categories, with the background determined from data

VH leptonic

tags

ttH leptonic

tags

tHq leptonic

tag

Photon Identification, diphoton vertex identification

- Photon IDMVA is used to classify prompt photons from fake photons (jets)
- Input variables: shower shape variables, isolation variables
- > **IDMVA** validated with $Z \rightarrow \mu \mu \gamma$ and $Z \rightarrow ee$ event

Vertex Identification BDT:

- > if vertex position is true within 1 cm => $m_{\gamma\gamma}$ resolution is dominated by γ energy resolution (true for ~79% events in simulation)
- Trained on ggH events and identifies a single vertex in each event
- Vertex ID BDT validated with Z→μμ events: μ tracks are omitted to mimic a diphoton system

photons required to have IDMVA score > -0.9 (preselection)

ggH event categorization and other production modes

Events / class

- Use a multi-class BDT (9 Classes): Predicts the probability that an event belongs to a given ggH STXS bin
- After being classified by the ggH BDT, events are divided into analysis categories using the diphoton BDT
- > Dedicated categorization for tHq events (tHq Leptonic)
- Data-driven estimation of key backgrounds for MVA training i.e. VBF, VH MET, ttH Hadronic

VBF

ttH Hadronic

tHq Leptonic

Signal & Background Modelling

- Shape of the parametric signal model for each year of simulated data, and for the sum of all years together
- MC tuning and Data/MC scale factors have been applied
- Better resolution in 2017 using Ultra-Legacy 2017 data set

- Model used to describe the background is extracted from data using the discrete profiling method
- A large set of candidate function families is considered, including exponential functions, Bernstein polynomials, Laurent series and power law functions

Signal Strength modifiers

$$\mu_i^f = rac{\sigma_i \mathcal{B}^f}{(\sigma_i)_{\mathrm{SM}} (\mathcal{B}^f)_{\mathrm{SM}}}$$

- Best-fit signal + background model shown with data for sum of all categories
- ➤ common signal strength modifier (μ): ratio of observed ($\sigma_{\rm H}$ x diphoton BR) to SM prediction
- The overall precision is about 8%

$$\mu = 1.12^{+0.09}_{-0.09} = 1.12^{+0.06}_{-0.06} \,(\text{theo})^{+0.03}_{-0.03} \,(\text{syst})^{+0.07}_{-0.06} \,(\text{stat}) \quad \mu_{\text{v}}$$

Signal strength modifiers per production mode

- μ_{VH} (VH hadronic + VH leptonic)
- μ_{VBF} (VBF production)
- μ_{top} (ttH + tHq + tHW)
- $\mu_{ggH}(ggH + bbH)$

"Maximal" Merging Scenario (17 parameters of interest)

- uncertainty is less than 150% of the SM prediction
- Measurement of **ttH** and **tH** simultaneously
- Best **tH** measurement: rate of **tH** production of **14 (8)** times the SM expectation is **observed (expected)** to be excluded at the 95% CL , σxB is $1.27^{+0.76}_{-0.69}$ fb
- BSM bins (in ggH and ggH) : in agreement with SM

Observed correlations between 17 parameters

considered in the maximal merging STXS fit

"Minimal" Merging Scenario (27 parameters of interest)

- Merges as few bins as possible that parameters do not become too anti-correlated (values of less than around 90%)
- Measurement with additional stage 1.2 splitting (ttH and ggH BSM)
 - Splitting **ttH** production into five separate parameters introduces larger correlations into the measurement
- \succ All σ results are in agreement with the SM predictions
- > Merged **ggH** and **VBF** bins (blue/orange lines): less model dependence and reduced correlations

Coupling Modifiers

 \succ The κ -framework defines coupling modifiers to directly parametrize deviations from the SM expectation in the couplings of the Higgs boson to other particles

- **Resolved** κ model is used: Here the scaling factors of loops present in Higgs boson production and decay are resolved into their SM components, in terms of the other parameters
- \succ Exclude negative $\kappa_{\rm f}$ with 0.5 (2.4) σ confidence

 \blacktriangleright **Unresolved** κ **model** is used: parameterise deviations in ggH and H $\rightarrow \gamma\gamma$ loops using effective coupling modifiers (κ $_{g}, \kappa_{\gamma})$

 \blacktriangleright The g and γ parameters are particularly sensitive to additional BSM states, that contribute towards the rate of Higgs boson production and decay via loop processes

Summary

- Measurements of Higgs boson properties with the Higgs boson decaying into a pair of photons are reported
- > The total Higgs boson signal strength, relative to the standard model **(SM)** prediction, is measured to be **1.12** \pm **0.09**
- Two different measurements are performed within the simplified template cross section framework, in which 17 and 27 independent kinematic regions are measured simultaneously
- Several additional measurements are the most precise made in a single channel to date
- Measurements of the Higgs boson's couplings to vector bosons and to fermions, are also in agreement with the SM expectations

Thanks

Backup

"Minimal" Merging Scenario

			SM 123	6 GeV Hi	ggs bos	s boson expected signal					
	Analysis categories	Total	Target		Fractio	on of tota	1 of total events			S/(S+B)	
		Total	STXS bin(s)	ggH	$b\overline{b}H$	qqН	$\rm VH~lep$	Top	(GeV)		
Γ	0J low $p_T^{\gamma\gamma}$ Tag0	296.2	86.6%	97.9%	1.1%	0.8%	0.1%	_	1.89	0.06	
	0J low $p_T^{\gamma\gamma}$ Tag1	340.0	88.5%	98.0%	1.0%	0.8%	0.1%		2.31	0.03	
	0J low $p_T^{\gamma\gamma}$ Tag2	279.6	89.3%	98.1%	1.0%	0.8%	0.1%		2.53	0.02	
	0J high $p_T^{\gamma\gamma}$ Tag0	612.4	81.9%	95.6%	1.4%	2.6%	0.4%	_	1.64	0.09	
	0J high $p_T^{\gamma\gamma}$ Tag1	1114.6	79.4%	95.4%	1.3%	2.8%	0.4%		2.19	0.05	
	0J high $p_T^{\gamma\gamma}$ Tag2	1162.6	78.3%	95.3%	1.4%	2.7%	0.5%		2.56	0.02	
	1J low $p_{\rm T}^{\gamma\gamma}$ Tag0	132.0	66.2%	88.8%	0.8%	9.4%	0.8%	0.1%	1.53	0.11	
	1J low $p_T^{\gamma\gamma}$ Tag1	340.0	66.3%	88.6%	0.8%	9.6%	0.9%	0.1%	1.95	0.05	
	1J low $p_T^{\gamma\gamma}$ Tag2	260.6	66.2%	88.3%	0.8%	9.7%	1.0%	0.1%	2.37	0.02	
	1J med $p_{\rm T}^{\gamma\gamma}$ Tag0	184.1	65.2%	81.7%	0.5%	16.3%	1.4%	0.2%	1.65	0.15	
	1J med $p_T^{\gamma\gamma}$ Tag1	310.2	66.3%	83.6%	0.4%	14.3%	1.6%	0.1%	1.91	0.08	
	1J med $p_{\rm T}^{\gamma\gamma}$ Tag2	291.4	65.0%	83.7%	0.5%	13.8%	1.8%	0.2%	2.13	0.03	
	1J high $p_{\rm T}^{\gamma\gamma}$ Tag0	37.3	61.9%	75.7%	0.2%	22.8%	1.0%	0.2%	1.55	0.30	
	1J high $p_T^{\gamma\gamma}$ Tag1	31.2	61.7%	75.0%	0.3%	23.4%	1.1%	0.2%	1.73	0.16	
	1J high $p_{\rm T}^{\gamma\gamma}$ Tag2	80.9	62.2%	76.5%	0.2%	21.5%	1.6%	0.2%	1.97	0.07	
	$\geq 2J \text{ low } p_T^{\gamma\gamma} \text{ Tag0}$	17.7	52.7%	76.7%	0.6%	19.0%	1.3%	2.4%	1.56	0.06	
	$\geq 2J \text{ low } p_T^{\gamma\gamma} \text{ Tag1}$	57.6	54.0%	74.4%	0.6%	20.5%	1.4%	3.0%	1.88	0.03	
	$\geq 2J \text{ low } p_T^{\gamma\gamma} \text{ Tag}2$	43.9	50.5%	72.7%	0.6%	20.8%	1.7%	4.2%	2.46	0.01	
	$\geq 2J \mod p_T^{\gamma\gamma} \operatorname{Tag0}$	21.2	64.9%	80.6%	0.3%	16.3%	1.0%	1.8%	1.42	0.17	
	$\geq 2J \mod p_T^{\gamma\gamma} \operatorname{Tag1}$	70.1	61.4%	77.9%	0.3%	18.1%	1.1%	2.6%	1.82	0.07	
	$\geq 2J \mod p_T^{\gamma\gamma} \operatorname{Tag2}$	135.4	57.5%	74.8%	0.4%	19.7%	1.4%	3.8%	2.08	0.03	
	≥ 2 J high $p_{\rm T}^{\gamma\gamma}$ Tag0	29.0	65.5%	77.8%	0.2%	18.7%	1.3%	2.1%	1.48	0.23	
	≥ 2 J high $p_{\rm T}^{\gamma\gamma}$ Tag1	52.5	62.3%	76.1%	0.2%	19.6%	1.5%	2.6%	1.76	0.11	
	≥ 2 J high $p_{\rm T}^{\gamma\gamma}$ Tag2	45.5	58.4%	73.8%	0.2%	20.4%	1.9%	3.7%	1.92	0.05	
	BSM 200 $< p_{\rm T}^{\gamma\gamma} < 300~{\rm Tag0}$	30.7	75.8%	77.5%	0.2%	19.4%	1.2%	1.6%	1.41	0.39	
	BSM 200 $< p_{\rm T}^{\gamma\gamma} < 300~{\rm Tag1}$	39.6	69.9%	73.8%	0.1%	21.5%	1.7%	2.8%	1.90	0.11	
	BSM 300 $< p_{\rm T}^{\gamma\gamma} < 450~{\rm Tag0}$	15.5	74.8%	76.3%	0.1%	19.7%	1.7%	2.2%	1.53	0.34	
	BSM 300 $< p_{\rm T}^{\gamma\gamma} < 450~{\rm Tag1}$	2.6	66.3%	67.9%	0.1%	22.5%	2.6%	7.0%	1.42	0.09	
	BSM $450 < p_T^{\gamma\gamma} < 650$	3.1	58.1%	61.8%	0.1%	30.0%	2.4%	5.6%	1.55	0.20	
	BSM $p_T^{\gamma\gamma} > 650$	0.9	72.5%	72.3%	0.1%	21.0%	2.9%	3.8%	1.21	0.36	

The expected number of signal events for $m_{\rm H} = 125 \,{\rm GeV}$ in analysis categories targeting ggH production, excluding those targeting the VBF-like phase space, shown for an integrated luminosity of $137 \,{\rm fb}^{-1}$. The fraction of the total number of events arising from each production mode in each analysis category is provided, as is the fraction of events originating from the targeted STXS bin or bins. Entries with values less than 0.05% are not shown. Here qqH includes contributions from both VBF and hadronic VH production, whilst "Top" includes tt H and tH together. The $\sigma_{\rm eff}$, defined as the smallest interval containing 68.3% of the $m_{\gamma\gamma}$ distribution, is listed for each analysis category. The final column shows the expected ratio of signal to signal-plus-background, S/(S+B), where S and B are the numbers of expected signal and background events in a $\pm 1\sigma_{\rm eff}$ window centred on $m_{\rm H}$.

OTTYC 1:	Definition	Fraction of cross a	Fraction of cross section			
STAS bin	units of $p_{\rm T}^{\rm H},m_{\rm JJ}$ and $p_{\rm T}^{\rm HJ}$ in GeV	units of $p_{\rm T}^{\rm H}$, $m_{\rm JJ}$ and $p_{\rm T}^{\rm HJ}$ in GeV VBF		$q\overline{q} \to Z(q\overline{q})H$	$\sigma_{\rm SM} B$ (ID)	
qqH forward	$ y_{\rm H} > 2.5$	6.69%	12.57%	9.84%	0.98	
qqH 0J	Exactly 0 jets	6.95%	5.70%	3.73%	0.77	
qqH 1J	Exactly 1 jet	32.83%	31.13%	25.03%	3.82	
qqH $m_{jj} < 60$	At least 2 jets, $m_{jj} < 60$	1.36%	3.58%	2.72%	0.23	
qqH VH-like	At least 2 jets, $60 < m_{\rm JJ} < 120$	2.40%	29.43%	28.94%	1.23	
qqH 120 < $m_{\rm JJ} < 350$	At least 2 jets, $120 < m_{\rm jj} < 350$	12.34%	13.92%	12.59%	1.53	
qqH VBF-like low $m_{\rm jj}$ low $p_{\rm T}^{\rm Hjj}$	At least 2 jets, $p_T^H < 200$,	10.26%	0.44%	0.35%	0.90	
qqH VBF-like low $m_{\rm JJ}$ high $p_{\rm T}^{\rm HJ}$	$350 < m_{IJ} < 700, p_T^{-1} < 25$ At least 2 jets, $p_T^{H} < 200,$ $350 < m_{II} < 700, p_T^{HJ} > 25$	3.85%	1.86%	1.74%	0.39	
qqH VBF-like high $m_{\rm JJ}$ low $p_{\rm T}^{\rm H_{\rm JJ}}$	At least 2 jets, $p_T^H < 200$, $m_{jj} > 700$, $p_T^{Hj} < 25$	15.09%	0.09%	0.08%	1.30	
qqH VBF-like high $m_{\rm JJ}$ high $p_{\rm T}^{\rm HJ}$	At least 2 jets, $p_T^H < 200$, $m_{jj} > 700$, $p_T^{Hjj} > 25$	4.25%	0.40%	0.39%	0.38	
qqH BSM	At least 2 jets, $m_{jj} > 350$, $p_T^H > 200$	3.98%	0.88%	0.71%	0.37	

Definition of the qqH STXS bins. The product of the cross section and branching fraction (\mathcal{B}), evaluated at $\sqrt{s} = 13$ TeV and $m_{\rm H} = 125$ GeV, is given for each bin in the last column. The fraction of the total production mode cross section from each STXS bin is also shown. Unless stated otherwise, the STXS bins are defined for $|y_{\rm H}| < 2.5$. Events with $|y_{\rm H}| > 2.5$ are mostly outside of the experimental acceptance and therefore have a negligible contribution to all analysis categories.

	SM 125 GeV Higgs boson expected signal								
Analysis categories	Total	Target Fraction of total events						$\sigma_{\rm eff}$	S/(S+B)
	Iotai	STXS bin(s)	ggH	VBF	VH had	VH lep	Top	(GeV)	
ggH VBF-like Tag0	14.1	37.7%	65.9%	27.3%	3.8%	0.8%	2.3%	1.85	0.14
ggH VBF-like Tag1	32.5	30.2%	61.3%	29.8%	4.1%	1.1%	3.7%	1.83	0.10
qqH low m_{jj} low p_{T}^{Hjj} Tag0	17.2	48.2%	36.6%	62.6%	0.4%	0.1%	0.3%	1.89	0.20
qqH low m_{jj} low p_{T}^{Hjj} Tag1	13.5	48.5%	35.5%	63.4%	0.6%	0.1%	0.3%	1.74	0.19
qqH high m_{ii} low p_{T}^{Hjj} Tag0	27.0	70.4%	17.1%	82.7%	0.2%		0.1%	1.78	0.49
qqH high m_{jj} low $p_{\rm T}^{\rm Hjj}$ Tag1	12.9	58.2%	20.8%	78.7%	0.3%	0.1%	0.2%	1.99	0.27
qqH low m_{ii} high p_{T}^{Hjj} Tag0	10.4	15.0%	56.0%	41.3%	1.3%	0.4%	1.0%	1.92	0.12
qqH low m_{jj} high p_{T}^{Hjj} Tag1	20.2	17.0%	57.9%	36.9%	2.4%	0.7%	2.1%	1.74	0.08
qqH high m_{ii} high p_T^{Hjj} Tag0	18.1	25.6%	28.1%	70.8%	0.4%	0.1%	0.5%	1.88	0.29
qqH high m_{jj} high p_{T}^{Hjj} Tag1	17.5	23.8%	39.5%	57.8%	0.9%	0.3%	1.5%	1.98	0.13
qqH BSM Tag0	11.2	71.2%	24.4%	74.8%	0.1%	0.1%	0.6%	1.62	0.56
qqH BSM Tag1	6.8	56.4%	36.9%	59.9%	1.1%	0.4%	1.7%	1.67	0.39
qqH VH-like Tag0	16.3	55.8%	36.5%	2.8%	55.0%	1.4%	4.2%	1.72	0.25
qqH VH-like Tag1	47.1	26.8%	64.9%	4.7%	26.4%	1.2%	2.9%	1.66	0.13

The expected number of signal events for $m_{\rm H} = 125 \,{\rm GeV}$ in analysis categories targeting VBF-like phase space and VH production in which the vector boson decays hadronically, shown for an integrated luminosity of $137 \,{\rm fb}^{-1}$. The fraction of the total number of events arising from each production mode in each analysis category is provided, as is the fraction of events originating from the targeted STXS bin or bins. Entries with values less than 0.05% are not shown. Here ggH includes contributions from the ggZ(qq)H and bbH production modes, whilst "Top" represents both ttH and tH production together. The $\sigma_{\rm eff}$, defined as the smallest interval containing 68.3% of the $m_{\gamma\gamma}$ distribution, is listed for each analysis category. The final column shows the expected ratio of signal to signal-plus-background, S/(S+B), where S and B are the numbers of expected signal and background events in a $\pm 1\sigma_{\rm eff}$ window centred on $m_{\rm H}$.

CTVC him	Definition	Fractio	a B (fb)		
51 A5 011	units of p_{T}^{V} in GeV	$q\overline{q}^{\prime}\!\rightarrow\!\!WH$	$q\overline{q} \to ZH$	$gg \to \mathrm{ZH}$	$\sigma_{\rm SM} \sigma$ (10)
WH lep forward		12.13%			0.123
ZH lep forward	$ y_{\rm H} > 2.5$		11.21%		0.058
ggZH lep forward		_	_	2.71%	0.002
WH lep $p_{\rm T}^{\rm V} < 75$	No jet requirements, $p_{\rm T}^{\rm V} < 75$	46.55%	_	_	0.473
WH lep $75 < p_T^V < 150$	No jet requirements, $75 < p_T^V < 150$	29.30%			0.298
WH lep 0J $150 < p_{\rm T}^{\rm V} < 250$	Exactly 0 jets, $150 < p_T^V < 250$	5.10%	_	_	0.052
WH lep $\geq 1J \ 150 < p_{\rm T}^{\rm V} < 250$	At least 1 jet, $150 < p_T^V < 250$	3.97%	_		0.040
WH lep $p_{T}^{V} > 250$	No jet requirements, $p_T^V > 250$	2.95%	_	_	0.030
ZH lep $p_{\rm T}^{\rm V} < 75$	No jet requirements, $p_{\rm T}^{\rm V} < 75$		45.65%		0.237
ZH lep $75 < p_T^V < 150$	No jet requirements, $75 < p_T^V < 150$	_	30.70%	_	0.160
ZH lep 0J 150 $< p_{\rm T}^{\rm V} < 250$	Exactly 0 jets, $150 < p_T^V < 250$	_	5.16%	_	0.027
ZH lep $\geq 1J$ 150 < $p_{\rm T}^{\rm V}$ < 250	At least 1 jet, $150 < p_T^V < 250$	_	4.27%	_	0.022
ZH lep $p_{\rm T}^{\rm V} > 250$	No jet requirements, $p_{\rm T}^{\rm V} > 250$	_	3.01%	_	0.016
ggZH lep $p_{\rm T}^{\rm V} < 75$	No jet requirements, $p_{\rm T}^{\rm V} < 75$		_	15.96%	0.013
ggZH lep $75 < p_{\rm T}^{\rm V} < 150$	No jet requirements, $75 < p_T^V < 150$			43.32%	0.036
ggZH lep 0J 150 < $p_{\rm T}^{\rm V}$ < 250	Exactly 0 jets, $150 < p_T^V < 250$		_	9.08%	0.008
ggZH lep ${\geq}1\mathrm{J}$ 150 < $p_{\mathrm{T}}^{\mathrm{V}}$ < 250	At least 1 jet, $150 < p_T^V < 250$		_	20.49%	0.017
ggZH lep $p_T^V > 250$	No jet requirements, $p_T^V > 250$	_	_	8.45%	0.007

Definition of the VH leptonic STXS bins. The product of the cross section and branching fraction (\mathcal{B}), evaluated at $\sqrt{s} = 13$ TeV and $m_{\rm H} = 125$ GeV, is given for each bin in the last column. The fraction of the total production mode cross section from each STXS bin is also shown. Unless stated otherwise, the STXS bins are defined for $|y_{\rm H}| < 2.5$. Events with $|y_{\rm H}| > 2.5$ are mostly outside of the experimental acceptance and therefore have a negligible contribution to all analysis categories. Only leptonic decays of the W and Z bosons are included in these definitions.

	SM 125 GeV Higgs boson expected signal									
Analysis categories	Total	Target Fraction of total events			ents		$\sigma_{\rm eff}$	S/(S+B)		
	rotai	STXS bin(s)	ggH	qqH	$\rm WH \ lep$	$\rm ZH~lep$	ggZH lep	Top	(GeV)	
ZH lep Tag0	2.4	99.6%	_			82.0%	17.7%	0.4%	1.67	0.57
ZH lep Tag1	0.9	97.5%	0.1%		0.2%	80.7%	16.9%	2.2%	1.85	0.32
WH lep $p_{\rm T}^{\rm V} < 75~{\rm Tag0}$	2.0	81.1%		0.2%	95.0%	3.3%	0.2%	1.3%	1.89	0.43
WH lep $p_{\rm T}^{\rm V} < 75 \text{ Tag1}$	4.5	75.7%	2.6%	0.5%	87.2%	7.0%	0.3%	2.4%	1.85	0.19
WH lep $75 < p_{\rm T}^{\rm V} < 150~{\rm Tag0}$	3.0	77.7%	0.7%	0.3%	93.2%	3.4%	0.8%	1.6%	1.94	0.56
WH lep $75 < p_{\mathrm{T}}^{\mathrm{V}} < 150~\mathrm{Tag1}$	3.3	60.8%	1.7%	1.4%	83.1%	7.7%	1.6%	4.4%	2.02	0.33
WH lep $p_{\rm T}^{\rm V} > 150~{\rm Tag0}$	3.5	79.9%	0.5%	0.4%	91.5%	3.6%	1.1%	2.8%	1.84	0.77
VH MET Tag0	2.2	97.9%	0.4%	0.9%	23.5%	56.9%	17.6%	0.8%	2.22	0.48
VH MET Tag1	3.6	90.5%	4.6%	3.1%	28.8%	46.0%	15.7%	1.9%	2.30	0.34
VH MET Tag2	6.6	72.2%	15.5%	8.8%	27.7%	33.5%	11.0%	3.5%	2.15	0.18

The expected number of signal events for $m_{\rm H} = 125 \,{\rm GeV}$ in analysis categories targeting Higgs boson production in association with a leptonically decaying W or Z boson, shown for an integrated luminosity of $137 \,{\rm fb}^{-1}$. The fraction of the total number of events arising from each production mode in each analysis category is provided, as is the fraction of events originating from the targeted STXS bin or bins. Entries with values less than 0.05% are not shown. Here ggH includes contributions from the ggZ(qq)H and bbH production modes, qqH incorporates both VBF and VH production with hadronic vector boson decays, and "Top" represents both tTH and tH production together. The $\sigma_{\rm eff}$, defined as the smallest interval containing 68.3% of the $m_{\gamma\gamma}$ distribution, is listed for each analysis category. The final column shows the expected ratio of signal to signal-plus-background, S/(S+B), where S and B are the numbers of expected signal and background events in a $\pm 1\sigma_{\rm eff}$ window centred on $m_{\rm H}$.

STYS bin	Definition	Fractio	Fraction of cross section				
5175 011	units of $p_{\rm T}^{\rm H}$ in GeV	$t\overline{t}H$	tHq	tHq tHW			
$t\overline{t}H$ forward		1.35%			0.016		
tH forward	$ y_{\rm H} > 2.5$		2.79%	1.06%	0.005		
$t\overline{t}H p_T^H < 60$	No jet requirements, $p_{\rm T}^{\rm H} < 60$	22.42%			0.259		
$\rm t\overline{t}H~60 < p_T^H < 120$	No jet requirements, $60 < p_{\rm T}^{\rm H} < 120$	34.61%			0.400		
$\rm t\overline{t}H$ 120 $< p_{\rm T}^{\rm H} < 200$	No jet requirements, $120 < p_{\rm T}^{\rm H} < 200$	25.60%			0.296		
ttH 200 < $p_{\rm T}^{\rm H} < 300$	No jet requirements, $200 < p_{\rm T}^{\rm H} < 300$	10.72%			0.124		
$\rm t \overline{t} H \ p_{\rm T}^{\rm H} > 300$	No jet requirements, $p_{\rm T}^{\rm H} > 300$	5.31%			0.061		
tH	No additional requirements		97.21%	98.94%	0.204		

Definition of the ttH, tH, and bbH STXS bins. The product of the cross section and branching fraction (\mathcal{B}), evaluated at $\sqrt{s} = 13$ TeV and $m_{\rm H} = 125$ GeV, is given for each bin in the last column. The fraction of the total production mode cross section from each STXS bin is also shown. Unless stated otherwise, the STXS bins are defined for $|y_{\rm H}| < 2.5$. Events with $|y_{\rm H}| > 2.5$ are mostly outside of the experimental acceptance and therefore have a negligible contribution to all analysis categories.

A summary of the impact of the main sources of systematic uncertainty in the fit to signal strength modifiers of the four principal production modes. The observed (expected) impacts are shown by the solid (empty) bars.