Constraints on Anomalous Couplings of the Higgs Boson to Vector Bosons and Fermions with the CMS

Ren-Qi Pan

On Behalf of CMS Collaboration

renqi.pan@cern.ch

November 25th, 2021

CMS-HIG-19-009

Phys.Rev.D 104 (2021) 5,052004

- Search for anomalous *Hgg* couplings
 - Kinematics of jets from gluon fusion with extra jets
- Search for anomalous *Htt* couplings
 - Kinematics of jets from gluon fusion with extra jets
 - Kinematics of top decays from *ttH* and *tHq*
- Search for anomalous HVV couplings
 - Kinematics of jets from VBF and VH productions
 - Kinematics of leptons $H \rightarrow ZZ$
- Measure corresponding EFT coefficients

Parameterization of Amplitudes

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v} \bar{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i}\tilde{\kappa}_{\mathrm{f}}\gamma_{5}\right) \psi_{\mathrm{f}}$$

$$\begin{split} A(\mathrm{HV}_{1} \mathrm{V}_{2}) &= \frac{1}{v} \left[a_{1}^{\mathrm{vv}} + \frac{\kappa_{1}^{\mathrm{vv}} q_{\mathrm{V1}}^{2} + \kappa_{2}^{\mathrm{vv}} q_{\mathrm{V2}}^{2}}{\left(\Lambda_{1}^{\mathrm{vv}}\right)^{2}} + \frac{\kappa_{3}^{\mathrm{vv}} \left(q_{\mathrm{V1}} + q_{\mathrm{V2}}\right)^{2}}{\left(\Lambda_{Q}^{\mathrm{vv}}\right)^{2}} \right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} \\ &+ \frac{1}{v} a_{2}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \end{split}$$

$$V_1V_2: ZZ, Z\gamma, \gamma\gamma, WW, gg.$$

Cross section fraction:

• Htt:
$$f_{\text{CP}}^{\text{Hff}} = \frac{|\tilde{\kappa}_{\text{f}}|^2}{|\kappa_{\text{f}}|^2 + |\tilde{\kappa}_{\text{f}}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_{\text{f}}}{\kappa_{\text{f}}}\right)$$

• Hgg: $f_{a3}^{\text{ggH}} = \frac{|a_3^{\text{gg}}|^2}{|a_2^{\text{gg}}|^2 + |a_3^{\text{gg}}|^2} \operatorname{sign}\left(\frac{a_3^{\text{gg}}}{a_2^{\text{gg}}}\right)$
• HVV: $f_{ai}^{\text{VV}} = \frac{|a_i^{\text{VV}}|^2 \alpha_{ii}^{(2e2\mu)}}{\sum_j |a_j^{\text{VV}}|^2 \alpha_{jj}^{(2e2\mu)}} \operatorname{sign}\left(\frac{a_i^{\text{VV}}}{a_1}\right)$

Ren-Qi Pan (ZJU)

	Untagged	VBF- 1jet	VBF- 2jet	VH- leptonic	VH- hadronic	tīH- leptonic	tīH- hadronic
ggH sig	182.98	15.50	6.70	0.35	4.68	0.02	0.18
VBF sig	7.23	3.28	7.23	0.05	0.28	0.01	0.05
WH sig	2.68	0.22	0.22	1.07	1.17	0.03	0.03
ZH sig	2.20	0.14	0.15	0.26	0.78	0.02	0.05
bbH sig	1.90	0.13	0.08	0.03	0.07	0.00	0.01
ttH sig	0.43	0.00	0.08	0.14	0.15	0.68	0.86
$(\tilde{\kappa}_{\rm t}=1.6)$	(0.45)	(0.00)	(0.12)	(0.15)	(0.15)	(0.87)	(1.18)
tH sig	0.14	0.01	0.10	0.04	0.03	0.04	0.03
Signal	197.89	19.31	14.57	2.00	7.40	0.80	1.23
$q\overline{q} \rightarrow 4\ell \ bkg$	210.50	6.93	1.92	2.23	1.87	0.08	0.04
$ m gg ightarrow 4\ell bkg$	19.79	1.53	0.56	0.38	0.24	0.01	0.01
EW bkg	3.43	0.18	1.37	0.26	0.57	0.24	1.07
Z + X bkg	77.94	2.46	4.88	1.20	3.29	0.21	1.07
Total	509.55	30.41	23.30	6.05	13.38	1.33	3.41
Observed	539	27	20	10	12	0	2

2

Event Categorization for HVV

	Untagged	Boosted	VBF- 1jet	VBF- 2jet	VH- leptonic	VH- hadronic
ggH sig	171.46	6.48	15.15	10.44	0.35	5.99
VBF sig	5.06	1.18	2.64	8.60	0.06	0.54
(a_3/a_2)	(0.29/0.29/	(0.69/0.54/	(0.12/0.09/	(6.10/4.95/	(0.03/0.02/	(0.28/0.21/
$\kappa_1/\kappa_2^{Z\gamma}$	0.05/0.09)	0.52/0.48)	0.03/0.05)	1.91/1.83)	0.01/0.01)	0.07/0.07)
WH sig	2.18	0.43	0.29	0.22	1.11	1.20
(a_3/a_2)	(1.93/3.15/	(3.81/3.20/	(0.83/0.92/	(1.20/1.05/	(2.75/2.86/	(3.43/3.33/
$\kappa_1/\kappa_2^{Z\gamma}$)	0.72/0.00)	6.28/0.00)	0.22/0.00)	2.04/0.00)	3.47/0.00)	2.93/0.00)
ZH sig	1.87	0.34	0.16	0.16	0.26	0.79
$(a_3/a_2/$	(0.99/1.89/	(1.87/1.66/	(0.30/0.35/	(0.56/0.51/	(0.42/0.48/	(1.42/1.53/
$\kappa_1/\kappa_2^{Z\gamma}$)	0.68/1.17)	4.14/12.34)	0.12/0.27)	1.30/3.88)	0.65/1.82)	1.84/4.69
bbH sig	1.84	0.04	0.13	0.09	0.03	0.09
ttH sig	1.65	0.04	0.00	0.32	0.13	0.19
tH sig	0.13	0.02	0.01	0.12	0.04	0.05
Signal	184.1	8.5	18.4	19.8	1.9	8.8
$(a_3/a_2/$	(178.2/180.3/	(12.9/12.0/	(16.5/16.7/	(18.7/17.4/	(3.7/3.9/	(11.4/11.4/
$\kappa_1/\kappa_2^{Z\gamma}$)	176.4/176.2)	17.5/19.4)	15.7/15.6)	16.1/16.6)	4.6/2.3)	11.1/11.0)
$q\overline{q} \rightarrow 4\overline{\ell} bkg$	206.05	1.89	6.78	2.78	2.21	2.30
$gg \rightarrow 4\ell \ bkg$	19.05	0.38	1.52	0.76	0.37	0.31
EW bkg	3.50	0.66	0.20	1.98	0.23	0.85
Z + X bkg	69.87	3.73	2.46	9.70	1.20	4.10
Total	481.3	15.1	29.3	34.9	5.9	16.24
$(a_3/a_2/$	(475.4/477.5/	(19.5/18.6/	(27.4/27.6/	(33.8/32.4/	(7.7/7.9/	(18.83/18.78/
$\kappa_1/\kappa_2^{Z\gamma}$)	473.6/473.4)	24.1/26.0)	26.6/26.5)	31.1/31.6)	8.6/6.3)	18.54/18.47)
Observed	512	18	27	30	10	13

э

Kinematic Discriminants and Matrix Element Approach

$$egin{alt} \mathcal{D}_{\mathrm{alt}}\left(\Omega
ight) &= rac{\mathcal{P}_{\mathrm{sig}}\left(\Omega
ight) }{\mathcal{P}_{\mathrm{sig}}\left(\Omega
ight) + \mathcal{P}_{\mathrm{alt}}\left(\Omega
ight) } \ \mathcal{D}_{\mathrm{int}}\left(\Omega
ight) &= rac{\mathcal{P}_{\mathrm{int}}\left(\Omega
ight) }{2\sqrt{\mathcal{P}_{\mathrm{sig}}\left(\Omega
ight) \mathcal{P}_{\mathrm{alt}}\left(\Omega
ight) }} \end{array}$$

$$egin{aligned} \mathcal{D}_{0^{-}}\left(\mathbf{\Omega}
ight) &= rac{\mathcal{P}_{0^{-}}(\mathbf{\Omega})}{\mathcal{P}_{0^{+}}(\mathbf{\Omega})+\mathcal{P}_{0^{-}}(\mathbf{\Omega})}, \ \mathcal{D}_{\mathrm{CP}}\left(\mathbf{\Omega}
ight) &= rac{\mathcal{P}_{\mathrm{int}}(\mathbf{\Omega})}{2\ \sqrt{\mathcal{P}_{0^{+}}(\mathbf{\Omega})\ \mathcal{P}_{0^{-}}(\mathbf{\Omega})}}, \ \mathcal{D}_{\mathrm{bkg}}\left(\mathbf{\Omega}
ight) &= rac{\mathcal{P}_{\mathrm{sig}}(\mathbf{\Omega})}{\mathcal{P}_{\mathrm{sig}}(\mathbf{\Omega})+\mathcal{P}_{\mathrm{bkg}}(\mathbf{\Omega})}, \ \mathcal{D}_{\Lambda_{1}}\left(\mathbf{\Omega}
ight) &= rac{\mathcal{P}_{\mathrm{int}}(\mathbf{\Omega})}{\mathcal{P}_{\Lambda_{1}}\left(\mathbf{\Omega}
ight)+\mathcal{P}_{\mathrm{SM}}(\mathbf{\Omega})}, \end{aligned}$$

- \mathcal{D}_{0^-} : distinguish CP-odd from CP-even
- \mathcal{D}_{CP} : measure the interference term
- \mathcal{D}_{bkg} : separate Higgs production from non-Higgs processes
- \mathcal{D}_{Λ_1} : sensitive to κ_1/Λ_1 term

Observables

Category	Selection	Observables \vec{x} for fitting
Scheme 1		
VBF-1jet	$\mathcal{D}_{\mathrm{liet}}^{\mathrm{VBF}} > 0.7$	$\mathcal{D}_{ m bkg}$
VBF-2jet	$\mathcal{D}_{2 \mathrm{jet}}^{\mathrm{VBF}} > 0.5$	$\mathcal{D}_{\mathrm{bkg'}}^{\mathrm{VBF}}\mathcal{D}_{\mathrm{2iet}}^{\mathrm{VBF}},\mathcal{D}_{\mathrm{0-}}^{\mathrm{ggH}},\mathcal{D}_{\mathrm{CP}}^{\mathrm{ggH}}$
VH-hadronic	$\mathcal{D}_{2 \mathrm{jet}}^{\mathrm{VH}} > 0.5$	$\mathcal{D}_{ m bkg}$
VH-leptonic	see Section 3	$\mathcal{D}_{\mathrm{bkg}}$
ttH-hadronic	see Section 3	$\mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{\mathrm{0-}}^{\mathrm{t\bar{t}H}}$
tīH-leptonic	see Section 3	$\mathcal{D}_{\mathrm{bkg}},\mathcal{D}_{\mathrm{0-}}^{\mathrm{t\bar{t}H}}$
Untagged	none of the above	$\mathcal{D}_{\mathrm{bkg}}$
Scheme 2		
Boosted	$p_{\mathrm{T}}^{4\ell} > 120\mathrm{GeV}$	$\mathcal{D}_{ m bkg}, p_{ m T}^{4\ell}$
VBF-1jet	$\mathcal{D}_{1 m jet}^{ m VBF} > 0.7$	$\mathcal{D}_{ m bkg}, p_{ m T}^{4\ell}$
VBF-2jet	$\mathcal{D}_{2 \mathrm{jet}}^{\mathrm{VBF}} > 0.5$	$\mathcal{D}_{bkg'}^{EW}$, $\mathcal{D}_{0h+}^{VBF+dec}$, $\mathcal{D}_{0-}^{VBF+dec}$, $\mathcal{D}_{\Lambda 1}^{VBF+dec}$, $\mathcal{D}_{\Lambda 1}^{Z\gamma,VBF+dec}$, \mathcal{D}_{int}^{VBF} , \mathcal{D}_{CP}^{VBF}
VH-hadronic	$\mathcal{D}_{2jet}^{ m VH} > 0.5$	$\mathcal{D}_{bkg}^{EW}, \mathcal{D}_{0h+}^{VH+dec}, \mathcal{D}_{0-}^{VH+dec}, \mathcal{D}_{\Lambda 1}^{VH+dec}, \mathcal{D}_{\Lambda 1}^{Z\gamma, VH+dec}, \mathcal{D}_{int}^{VH}, \mathcal{D}_{CP}^{VH}$
VH-leptonic	see Section 3	$\mathcal{D}_{ m bkg'} p_{ m T}^{4\ell}$
Untagged	none of the above	$\mathcal{D}_{bkg}, \mathcal{D}_{0b+}^{dec}, \mathcal{D}_{0-}^{dec}, \mathcal{D}_{\Lambda 1}^{dec}, \mathcal{D}_{\Lambda 1}^{Z\gamma, dec}, \mathcal{D}_{int}^{dec}, \mathcal{D}_{CP}^{dec}$

The list of kinematic observables used for category selection and fitting in categorization Schemes 1 and 2 $\,$

Image: A matrix and a matrix

э

Observables in ttH Category in Scheme 1

Observables in VBF-2jet Category in Scheme 1

Observables in Boosted Category in Scheme 2

Constraints on *Htt* Coupling

- *tHq* process included
- tHq has interference between HWW and Htt

Constraints on Htt Coupling via Combining ttH with ggH

NOT simple addition of two independent results

Constraints on HVV Coupling in EFT Higgs Basis

$$\begin{split} \delta c_{z} &= \frac{1}{2}a_{1} - 1, \quad c_{z\Box} = \frac{m_{Z}^{2}s_{w}^{2}}{4\pi\alpha} \frac{\kappa_{1}}{(\Lambda_{1})^{2}}\\ c_{zz} &= -\frac{s_{w}^{2}c_{w}^{2}}{2\pi\alpha}a_{2}, \quad \tilde{c}_{zz} = -\frac{s_{w}^{2}c_{w}^{2}}{2\pi\alpha}a_{3} \end{split}$$

Ren-Qi Pan (ZJU)

CMS-HIG-19-009

November 25th, 2021 14 / 15

э

Measurements of anomalous couplings using full Run2 data in $H \to 4\ell$ final state

- Explore Higgs production and decay($H
 ightarrow 4\ell$)
- Measure HVV , Hgg and Htt anomalous couplings,
- especially CP property
- All anomalous couplings are measured at the same time
- Results also presented in EFT coefficients framework.