ELECTROWEAK-BOSON PRODUCTION IN P-PB AND PB-PB COLLISIONS AT THE LHC WITH ALICE

Mingrui Zhao for the ALICE collaboration

Date: 27 Oct 2020

China Institute of Atomic Energy mingrui.zhao@mail.labz0.org 7th-China LHC Physics Workshop

- 1. Introduction and ALICE detector
- 2. W and Z with ALICE
- 3. Conclusions and perspectives

Z and **W** bosons: sensitive probes of the nuclear modifications of the parton distribution functions (PDF):

- production well described by perturbative QCD and electroweak theory
- $\odot\,$ produced in the hard processes, during the initial stages of the collision
- \odot if studied in their leptonic decay: insensitive to the strongly-interacting medium

Production in heavy-ion collisions modified compared to pp collisions following various nuclear effects.

Goal: help constraining the nuclear PDF (nPDF) in models by adding data for their global fits.

Physics motivation

Production cross section: to be compared to the expression obtained with the QCD factorization theorem, expressed at leading order as:

$$\sigma_{AB} \propto \sum_{q} \frac{4\pi e_q^2 \alpha^2}{9\hat{s}} f_q(x_1, Q^2) f_{\bar{q}}(x_2, Q^2)$$

Nuclear modification factor: investigates the suppression or enhancement of the production due to nuclear effects with respect to pp collisions:

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \cdot \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}y}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}y}, \qquad \qquad R_{\rm pA} = \frac{1}{A} \cdot \frac{\mathrm{d}\sigma_{\rm pA}/\mathrm{d}y}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}y}$$

with T_{AA} : nuclear overlap function from Glauber model.

W charge asymmetry: sensitive to the down/up ratio and to quark densities in the nucleus:

$$A = \frac{N_{\mu^+ \leftarrow W^+} - N_{\mu^- \leftarrow W^-}}{N_{\mu^+ \leftarrow W^+} + N_{\mu^- \leftarrow W^-}}$$

Large rapidities: probing of the low ($\sim 10^{-4}$ to $\sim 10^{-3}$) and high ($\sim 10^{-1}$ to almost unity) Bjorken-*x* regions

Pb-Pb:

 $2.03 < y_{\rm cms} < 3.53$

p-Pb, Pb-going:

W and Z with ALICE

Collision system	Energy	Luminosity	Year	Analyses
Pb–Pb	5.02 TeV	663 \pm 15 μ b ⁻¹	2015 + 2018	W
Pb–Pb	5.02 TeV	\sim 750 $\mu { m b}^{ ext{-1}}$	2015 + 2018	Z
p–Pb	F 02 TaV	$5.03\pm0.18~\mathrm{nb^{-1}}$	2012	7 \\/
Pb–p	5.02 Tev	5.81 ± 0.20 $\rm nb^{1}$	2015	∠, ∨∨
p–Pb	9 16 TAV	8.47 ± 0.18 nb ⁻¹	2016	Z, W
Pb–p	0.10 160	12.77 ± 0.25 $\rm nb^{-1}$	2010	

- \odot Z in Pb–Pb at $\sqrt{s_{\rm NN}}=5.02$ TeV: measurement combining the data from the 2015 and 2018 periods.
- $\,\odot\,$ Z in p–Pb at $\sqrt{s_{_{\rm NN}}}$ = 8.16 TeV: submitted along the Pb–Pb results
- \odot W in p–Pb at $\sqrt{s_{\rm NN}} = 8.16$ TeV and Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV: preliminary results, first measurements at large rapidities

JHEP 2009 (2020) 076 (Z in p-Pb and Pb-Pb).

Z-boson yield extraction

Z candidates: opposite-sign muon pairs in the fiducial region:

$$\begin{cases} -4 < \eta_{\mu} < -2.5, \\ p_{\rm T}(\mu) > 20 \ {\rm GeV}/c, \\ 60 < m_{\mu^+\mu^-} < 120 \ {\rm GeV}/c^2. \end{cases}$$

FONLL: JHEP 10(2012)137

POWHEG: JHEP 07(2008)060

Background:

- $\odot~$ Z $\rightarrow \tau \tau \rightarrow \mu \mu$, pairs from charm, bottom and top (FONLL, POWHEG), ($\sim 1\%)$
- combinatorial background (same-sign dimuon invariant mass distribution), negligible or subtracted from Z candidates

Low background \rightarrow signal extracted by counting the entries in the invariant mass distribution. Raw yield corrected for the acceptance \times efficiency of the detector

Increased statistics with respect to p-Pb at 5.02 TeV:

- 3 times more Z boson identified at forward rapidity,
- \bigcirc 15 times more at backward rapidity.

Comparison with theory: using CT14 as baseline PDF and EPPS16 or nCTEQ15 for nuclear modifications.

Despite the better precision, unable to draw firm conclusions on PDF modifications.

CT14: Phys. Rev. D 93, 033006 (2016) EPPS16: EPJC(2017) 77:163 nCTEQ15: Phys. Rev. D 93, 085037 (2016) MCFM: EPJC 77(2017)7 FEWZ: Comp. Phys. Comm. 182(2011)2388-2403 Merging of the 2015 and 2018 data samples, luminosity increased from 225 to 750 μ b⁻¹, 3 times more Z bosons. Improvement of the precision of the measurement.

- Compatible with calculations including nPDFs using three different models,
- 3.4σ deviation from free PDF prediction with CT14 (previous result: 2.3σ deviation).

EPS09: JHEP 04(2009)065 EPS09s: JHEP 07(2012)073

ALI-PUB-347344

Strongest evidence of nuclear modifications with gauge bosons measured with ALICE.

Differential studies with more bins than the previously published results:

- \bigcirc $R_{
 m AA}$ as a function of rapidity
- invariant yield as a function of centrality and rapidity
- Larger deviation for the most central events and the largest rapidities

O Better agreement when including nuclear modifications

W-boson yield extraction

W extraction: Fit of the single muons $p_{\rm T}$ distribution:

 $f(p_{\mathrm{T}}) = N_{\mathrm{HF}} \cdot f_{\mathrm{HF}}(p_{\mathrm{T}}) + N_{\mu \leftarrow W} \cdot (f_{\mu \leftarrow W}(p_{\mathrm{T}}) + R \cdot f_{\mu \leftarrow Z}(p_{\mathrm{T}}))$

- $\bigcirc f_X(p_{\mathrm{T}})$: MC templates (FONLL, POWHEG),
- \bigcirc N_X : free parameters,
- \bigcirc *R*: ratio of the Z to W cross sections from POWHEG.

In the fiducial region:

$$-4 < \eta_{\mu} < -2.5,$$

 $p_{\rm T}(\mu) > 10 \ {\rm GeV}/c.$

Same treatment of acceptance \times efficiency as for Z.

W^\pm in p–Pb at 8.16 TeV

Differential cross sections

as a function of rapidity, compared to theoretical predictions.

 Deviation from theory for W⁻ at backward rapidity in the most central bin

W^\pm in p–Pb at 8.16 TeV

Lepton charge asymmetry

compared with theoretical predictions.

Nuclear modification factor: measured as a function of rapidity.

Reference cross section obtained from calculations with POWHEG and CT10nlo.

Deviation from 1 associated to isospin and nuclear effects.

First measurement of W in Pb–Pb at large rapidities.

Cross section as a function of centrality: decrease of the production for more peripheral events

Normalized yield expected scaling of $N_{\rm W}$ with $T_{\rm AA}$:

W^\pm in Pb–Pb at 5.02 TeV

Nuclear modification factor: using reference cross section from POWHEG + CT10nlo.

Deviation from 1 associated to isospin and nuclear effects.

In p–Pb:

- \odot Z measurement results (JHEP 2009 (2020) 076), preliminary results for W
- Significant increase of statistics compared to analyses at 5.02 TeV, deviation of the measured W production from free-PDF calculation observed at large rapidities

In Pb-Pb:

- Z measurements combining 2015 and 2018 periods (JHEP 2009 (2020) 076), preliminary results for W
- $\odot\,$ More significant deviation from free-PDF prediction for Z
- Measurement of the W production at forward rapidity. The presented results includes the 2015 samples only, results with 2018 sample is approching.
- $\,\odot\,$ Statistic uncertainty dominates, can have improvement with Run3 and Run4 data

Large amount of measurements at large rapidities provide extra inputs for nPDFs global fits. New paper of W in p–Pb and Pb–Pb is under collaboration review.

PDG 2018:

 $\begin{array}{ll} m_Z = 91.1876 \pm 0.0021 \; {\rm GeV}/c^2 & m_W = 80.379 \pm 0.012 \; {\rm GeV}/c^2 \\ \Gamma_Z = 2.4952 \pm 0.0023 \; {\rm GeV} & \Gamma_W = 2.085 \pm 0.042 \; {\rm GeV} \\ BR_{Z \rightarrow \mu^+ \mu^-} = 3.3662 \pm 0.0066 \; \% & BR_{W \rightarrow \mu \nu} = 10.63 \pm 0.15 \; \% \end{array}$

Higher order processes: include gluon and photon initial and final state radiations:

$$\begin{array}{ll} q+\bar{q}\rightarrow W+g & q+\bar{q}\rightarrow Z+g \\ q+\bar{q}\rightarrow W+\gamma & q+\bar{q}\rightarrow Z+\gamma \\ q+g\rightarrow W+q' & q+g\rightarrow Z+q' \\ q+\gamma\rightarrow W+q' & q+\gamma\rightarrow Z+q' \end{array}$$

Why measuring Z and W in HIC

- $\bigcirc\,$ Probing the cold nuclear effects,
- $\bigcirc\,$ reference for hot matter effects,
- calibration of muons and electrons detectors,
- $\bigcirc\,$ estimator of the collision centrality.

Phys. Rev. Lett. 110, 022301 (2013)

Complementarity of the coverages between the LHC experiments, allow to probe several Bjorken-*x* ranges.

Large rapidities: probing of the low ($\sim 10^{-4}$ to $\sim 10^{-3}$) and high ($\sim 10^{-1}$ to almost unity) Bjorken-x regions.

Complementary between the LHC experiments in term of Bjorken-x coverages:

- \bigcirc ALICE and LHCb at high and low-x,
- \bigcirc ATLAS and CMS at mid-x.

Dimuon invariant mass distribution after selection, compared with simulated distribution scaled to the number of events in the data.

arXiv:2005.11126

W^\pm and Z p–Pb at 5.02 TeV

JHEP 1702 (2017) 077

Cross-sections compared to pQCD and FEWZ: agreement with and without including nPDFs.

W^\pm and Z bosons results in p–Pb at 5.02 TeV

Lepton charge asymmetry: partial cancellation of uncertainties, still compatible with and without including nPDFs.

Centrality dependence: compatible with constant (within uncertainties), scaling of the cross-section with the number of binary collisions.

Z uncertainty comparison between run 2 data and run 3 expectation

 \Rightarrow large reduction of the uncertainty, which becomes of the same order as the one on theoretical predictions.

ALICE-PUBLIC-2019-001

ALICE: muon spectrometer

ALICE Twiki

Trigger: 18 resistive plate chambers in two stations.

Tracking: 10 multi-wire proportional chambers, two-by-two in five stations. **Dipolar magnet**: integrated field of 3 T m for charge and momentum measurements. **Absorbing system**: background rejection. Shadowing and anti-shadowing: increase or decrease of the production following from constructive or destructive interferences of amplitudes arising from multiple scattering of partons in the nucleus. EMC effect: not totally understood, believed to come from the modification of the nucleon radius and mass as well as multi-nucleons effects in the nucleus.

Fermi motion: dynamics of the nucleons in the nucleus.

Color glass condensate: gluon density saturation reached in nucleus (from Lorentz contraction). **Cronin effect**: broadening of the p_T spectra due to nucleon-nucleon interactions in the nucleus. **Nuclear absorption**: breaking of a bound state passing through a nuclei.

Parton energy loss: elastic scattering from displacements inside the nucleus before hard scattering. Comovers absorption: interaction between comovers as they move away from the interaction point. Colour screening and sequential dissociation: dissociation of quarkonia bound states when the radius reaches the Debye screening radius.

Regeneration: new bound states created by initially produced quark and antiquarks.

nPDF models

Up (valence):

Anti-up:

Down (valence):

Anti-down:

Gluon:

Anti-strange:

nPDF models

nPDF set	EPS09	nCTEQ15	EPPS16			
Order	NLO	NLO	NLO			
Flavour separation		valence quarks	valence $+$ sea quarks			
Proton baseline	CTEQ6.1	CTEQ6M-like	CT14NLO			
Free parameters	15	35	52			
Data points	929	708	1811			
Included experimental data						
DIS in I^-+A	\checkmark	\checkmark	\checkmark			

DIS in I^-+A	\checkmark	\checkmark	\checkmark
Drell-Yan in p+A	\checkmark	\checkmark	\checkmark
RHIC pions d+Au	\checkmark	\checkmark	\checkmark
ν -nucleus DIS			\checkmark
Drell-Yan in $\pi+A$			\checkmark
LHC p–Pb dijets			\checkmark
LHC p–Pb W and Z			\checkmark

EPPS16 – nCTEQ15 comparison:

- Valence quarks: *u* and *d* independently parametrized, both models consistent with one another.
- Sea quarks: u, d and s independently parametrized in EPPS16, while not in nCTEQ15 \Rightarrow more uncertainty but less bias (uncertainty mostly comes from strange quark).

Gluons: at large Bjorken-*x*, smaller uncertainty in EPPS16 due to constrains from LHC dijet data. At small Bjorken-*x*, smaller uncertainty in nCTEQ15 following from the form of the fit.

PoS (HardProbes2018) 014

