

Updated Result on Nucleon Transversity PDF from Lattice QCD

Fei Yao (Beijing Normal University) CLHCP, 2021/11/25

OUTLINE

Introduction

Lattice calculation

> Numerical result

Summary and outlook

PART.1

Introduction

Introduction

Deep inelastic scattering

• proton contains point-like objects

Х

Feynman's parton model

□ Nucleons are Lorentz contracted along the direction of motion

□ Parton distribution function (PDF)

Introduction

Cross section

Parton distribution (Nonperturbative)

D Polarized PDF

Unpolarized	Longitudinally polarized	Transversely polarized	
•	$ \begin{array}{c} \bullet \rightarrow \bullet \bullet \\ \bullet \bullet \rightarrow \bullet \\ \hline \bullet \bullet \bullet \rightarrow \bullet \\ \hline \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	transversity	

Motivation

□ Studying PDF can understand inner structure of nucleons in detail

There are more experimental data of unpolarized and helicity PDF than transversity PDF

Wider error band

Lin et al— Prog.Part.Nucl.Phys. 121 (2021) 103908

Motivation

Global fit

JAM Collaboration — PRD.102 (2020) 5, 054002

Large error compared with unpolarized and helicity PDF

□ The fitted antiquark transversity is zero within large uncertainties

Lattice calculation can provide information complementary to experimental data

Theoretical framework

□ The light-cone transversity PDF Definitions: $\delta q(x) = \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle P, s_{\perp} | \bar{\psi}(\lambda n) i \gamma^x \gamma^t \gamma^5 L(\lambda n, 0) \psi(0) | P, s_{\perp} \rangle \qquad L(\lambda n, 0) = e^{ig \int_0^{\lambda} d\lambda' n \cdot A(\lambda' n) \psi(0) | P, s_{\perp} \rangle}$ **Lattice QCD calculate physcial observable** $\frac{\gamma z}{\sqrt{2}}$ from path integral in Euclidean space $t \to -i\tau, e^{iS_M} \to e^{-S_E}$ **Recover physical limit** $m_{\pi} \to m_{\pi}^{phys}, a \to 0, L \to \infty$ **Can be used to compute Euclidean (quasi-LF)** correlations at large momentum in LaMET Ji, PRL 110 (2013) 262002

z/2

Theoretical framework

quasi-LF correlation in Euclidean space

$$\tilde{h}(P,z) = \langle P, s | \bar{\psi}(z) i \gamma^x \gamma^t \gamma^5 L(z,0) \psi(0) | P, s \rangle$$

The light-cone transversity PDF can be related to the quasi-PDF by the following factorization formula

$$\begin{split} \tilde{\delta q}(x,P^z) &= \int_0^1 \frac{dy}{|y|} \delta C\left(\frac{x}{y},\frac{\mu}{yP_z}\right) \delta q(y,\mu) + \mathcal{O}(\Lambda_{QCD}^2/(yP^z)^2,\Lambda_{QCD}^2/((1-y)P^z)^2) \\ & \delta q\left(x,\frac{\mu}{P^z}\right) = \int_{-\infty}^\infty \frac{d\zeta}{2\pi} e^{ix\zeta} \tilde{h}\left(\zeta,\frac{\mu^2\zeta^2}{P_z^2}\right) \ \zeta = zp_z \end{split}$$

Theoretical framework

Bare lattice matrix element Non-perturbative

Renormalization (Hybrid etc.)

Renormalized matrix element

Extrapolation, Fourier transformation

Quasi-PDF

Factorization (matching)

Light-cone PDF

PART.2

Lattice calculation

CLS ensembles

ensembles	a(fm)	L ³ ×T	$m_{\pi}(MeV)$
H102	0.08636	32 ³ ×96	354
N203	0.06426	48 ³ ×128	345
N302	0.04981	48 ³ ×128	346

- H102: $P_z = \{4, 5, 6\}2\pi/L \approx \{1.79, 2.24, 2.69\}GeV$
- N203: $P_z = \{4, 5\}2\pi/L \approx \{1.6, 2\}GeV$
- N302: $P_z = \{4, 5\}2\pi/L \approx \{2.07, 2.59\}GeV$

Bare matrix elements

a=0.06426fm

Renormalization in Hybrid scheme

• The quasi-LF correlation operator is multiplicatively renormalized

 $[\bar{\psi}(z)\Gamma W(z,0)\psi(0)]_{B} = e^{\delta m|z|} Z [\bar{\psi}(z)\Gamma W(z,0)\psi(0)]_{R}$ Ji, Zhang, Zhao, PRL 120, 112001 (2018)

• Ratio scheme : Divide by the same operator matrix element at zero

momentum Radyushkin, PRD 98 (2018) 1, 014019

• Problem: introduce undesired IR effects at large distances

Hybrid renormalization scheme

Ji, JHZ et al, Nucl.Phys.B 964 (2021) 115311

$$\tilde{h}^{R}(z,a,P_{z}) = \frac{\tilde{h}(z,a,P_{z})}{Z_{X}(z,a)} \theta(z_{S} - |z|) + \tilde{h}(z,a,P_{z})e^{-\delta m|z|}Z_{\text{hybrid}}(z_{S},a)\theta(|z| - z_{S})$$

Renormalization in Hybrid scheme

 $\tilde{h}^{R}(z,a,P_{z}) = \frac{\tilde{h}(z,a,P_{z})}{Z_{X}(z,a)} \theta(z_{S} - |z|) + \tilde{h}(z,a,P_{z})e^{-\delta m|z|}Z_{\text{hybrid}}(z_{S},a)\theta(|z| - z_{S}) \quad z_{S} = 0.3 \, fm$

- For $|z| \leq z_s$ (perturbative region), do the renormalization in the ratio scheme
- For $|z| > z_s$, use Wilson line mass renormalization that avoids introducing extra nonperturbative effects at large distances

15

Extrapolation and Fourier transformation

- Missing large λ information
- Unphysical oscillation

 $\tilde{\phi}_{\pi}(\mathbf{x}, n_z=4)$

$$\tilde{h}(z, P_z) = \left[\frac{c_1}{(-i\lambda)^a} + e^{i\lambda}\frac{c_2}{(i\lambda)^b}\right]e^{-\frac{\lambda}{\lambda_0}}$$

Fourier transformation

R. Zhang et al —PRD.102.094519(2020)

 $ilde{\delta q}(x) = \int \frac{d\lambda}{2\pi} e^{ix\lambda} \tilde{h}(\lambda)$

Х

Matching coefficient (In momentum space)

Ratio scheme

$$\delta C_r \left(x, \frac{\mu}{p_z} \right) = \delta(1-x) + \frac{\alpha_s C_F}{2\pi} \begin{cases} \left[\frac{2x}{1-x} \ln \frac{x}{x-1} - \frac{2}{1-x} \right]_+ & x > 1\\ \left[\frac{2x}{1-x} \left(\ln \frac{4p_z^2}{\mu^2} + \ln x(1-x) \right) - \frac{2x}{1-x} + \frac{2}{1-x} \right]_+ & 0 < x < 1\\ \left[-\frac{2x}{1-x} \ln \frac{x}{x-1} + \frac{2}{1-x} \right]_+ & x < 0 \end{cases}$$

Hybrid scheme

$$\delta C_h\left(x, \frac{\mu}{p_z}, z_s^2 \mu^2\right) = \delta C_r\left(x, \frac{\mu}{p_z}\right) + \frac{\alpha_s C_F}{2\pi} 2 \left[-\frac{1}{|1-x|} + \frac{2Si((1-x)\lambda_s)}{\pi(1-x)}\right]_+$$

PART.3 Numerical result

18

- PDF plays an important role in the detailed understanding of the internal structure of nucleon
- We calculate the Nucleon Transversity PDF on lattice using LaMET
- The numerical results agree with the global fit results within the error band
- ➢ Follow-up
 - Improving error analysis
 - physical extrapolation

Thank you for listening !