

CLHCP 2021

Non-prompt charm meson measurements with ALICE

Xinye Peng

Central China Normal University, China

Outline

- Motivation and analysis technique
- Results
 - ✓ Preliminary or published results
- Summary

- Beauty quarks produced in hard scattering processes in the initial stages of the collisions
 - \succ τ_b ~ 0.02 < τ_c ~0.07 < τ_{QGP} ~ 0.1-1 fm/c
 - Experience full system evolution interacting with the medium in Pb-Pb collisions -> calibrated probe

2

- Beauty quarks produced in hard scattering processes in the initial stages of the collisions
 - \succ τ_b ~ 0.02 < τ_c ~0.07 < τ_{QGP} ~ 0.1-1 fm/c
 - Experience full system evolution interacting with the medium in Pb-Pb collisions -> calibrated probe

X.Peng

Beauty production in Pb-Pb collisions compared to charm quarks

> Mass dependence energy loss: $m_{\rm b} > m_{\rm c} \rightarrow \Delta E_{\rm c} > \Delta E_{\rm b}$ (dead cone effect)

- Beauty quarks produced in hard scattering processes in the initial stages of the collisions
 - \succ τ_b ~ 0.02 < τ_c ~0.07 < τ_{QGP} ~ 0.1-1 fm/c
 - Experience full system evolution interacting with the medium in Pb-Pb collisions -> calibrated probe

- Beauty quarks produced in hard scattering processes in the initial stages of the collisions
 - \succ τ_b ~ 0.02 < τ_c ~0.07 < τ_{QGP} ~ 0.1-1 fm/c
 - Experience full system evolution interacting with the medium in Pb-Pb collisions -> calibrated probe

Why non-prompt charm measurements?

5

- Non-prompt charm production originates from beauty-hadron decays
 - ➢ no negligible at LHC energies (~5-20%)
 - more statistics w.r.t fully reconstructed B meson

Provide good opportunity to study the properties of beauty quark (i.e energy loss, collective flow and hadronisation)

Traditional analysis strategy

- Enhance Non-prompt fraction : selections based on the decay topological variables (such as decay length or impact parameter(DCA))
 1200 (a) Pb-Pb Signal
 - Even with ML optimization, the

 $f_{\rm non-prompt}$ can only reach up to 30%

28/09/2021

Why non-prompt charm measurements?

6

- Non-prompt charm production originates from beauty-hadron decays
 - ➢ no negligible at LHC energies (~5-20%)
 - more statistics w.r.t fully reconstructed B meson

Provide good opportunity to study the properties of beauty quark (i.e energy loss, collective flow and hadronisation)

Traditional analysis strategy

- Enhance Non-prompt fraction: selections based on the decay topological variables (such as decay length or impact parameter(DCA))
 - Even with ML optimization, the

 $f_{\rm non-prompt}$ can only reach to 30%

- Non-prompt fraction calculation
 - Template fit of DCA to separate prompt and non-prompt component

28/09/2021

New strategy of non-prompt selection

• Two individual ML trainings including topological variables are performed, aiming to simultaneously increase (control) the $b \to D$ fraction and suppress the combinatorial background

28/09/2021 X.Peng

$(\operatorname{Acc} \times \varepsilon)_{i}^{\operatorname{prompt}} \cdot N_{\operatorname{prompt}} + (\operatorname{Acc} \times \varepsilon)_{i}^{\operatorname{non-prompt}} \cdot N_{\operatorname{non-prompt}} - Y_{i} = \delta_{i}$ • The system can be solved and obtain the

 $f_{\rm non-prompt}$ from χ^2 minimization of the system

Define n sets of selections with different prompt

and non-prompt D-meson contributions

• An algebraic system can be obtained:

New data-driven $f_{non-prompt}$ calculation

28/09/2021

Results in pp collisions: Non-prompt D mesons

- Non-prompt D^0, D^+, D_s^+ cross section measured in pp collisions down to low p_T at 5.02 TeV
- Measurements described by FONLL calculations within uncertainties
- Non-prompt/prompt ratio \rightarrow different p_T shape / constraint on b \rightarrow D decay branching ratio

Results in pp collisions: fragmentation fraction and total beauty cross section

10

ALI-PUB-496395

28/09/2021

- Beauty $f_s/(f_u + f_d)$ has no significant dependence on energy and collisions system
- Most precise measurement measurement of $b\overline{b}$ cross section at 5.02 TeV with non-prompt D mesons
 - Described by FONLL and NNLO calculations

FONLL: JHEP 1210 137 (2012) NNLO: JHEP 03 (2021) 029

Results in Pb-Pb collisions: Non-prompt D⁰ R_{AA}

- R_{AA} measured first time down to $p_T = 1$ GeV/c for b \rightarrow D⁰ in 0-10% and 30-50% Pb-Pb collisions at 5.02 TeV
- R_{AA} compatible with unity within uncertainties for $p_T < 3$ GeV/*c* in both 0-10% and 30-50%
- Theoretical models (LGR, MC@sHQ+ EPOS2,CUTJET3.1) that include collisional and radiative energy loss describe the data within uncertainties
- TAMU included elastic collisions only, underestimate the suppression at 0-10%
 - Both radiative and collisional processes are important for beauty quark in-medium energy loss

AMU: PLB 735 (2014) 445

MC@sHQ+EPOS2: PRC 89 (2014) 014905 LGR: EPJC 80 no.7, (2020) 671, EPJC 80 no. 12, (2020) 113 CUJET3.1: CPC 43 no.4, (2019) 044101

Results in Pb-Pb collisions: Non-prompt D⁰ R_{AA}

Integrated non-prompt D⁰ R_{AA} compatible with unity within 1 σ, with prompt less than 1.5 σ -> shadowing or hadronization via coalescence

$$R_{AA}^{\text{non-prompt D}^0}$$
 (0-10%) = 0.92 ± 0.07 (stat.) ± 0.15 (syst.)

$$R_{AA}^{\text{prompt D}^0}(0-10\%) = 0.689 \pm 0.054 \text{ (stat.)}_{-0.106}^{+0.104} \text{ (syst.)}.$$

- Ratio of the R_{AA} of non-prompt to prompt D⁰ (beauty/charm) > $p_T < 5 \text{ GeV}/c$: pattern hints difference in shadowing / flow / decay kinematics for charm and beauty

Uncertainties further reduced by simultaneously obtaining prompt and non-prompt

28/09/2021

Results in Pb-Pb collisions: Non-prompt D⁰ R_{AA}

13

- Test the doube R_{AA} ratio with different LGR configurations
 - Shadowing effect largely cancelled for the double ratio
 - The "valley" structure is mainly due to the formation of prompt D-mesons via charm-quark coalescence
 - > The significant enhancement of double ratio at high $p_{\rm T}$ is related to the mass dependent quark in-medium energy loss effect

LGR: including collisional and radiative processes

Results in Pb-Pb collisions: Non-prompt D_S R_{AA}

14

- First measurement of non-prompt $D_s^+ R_{AA}$ in central (0-10%) heavy-ion collisions
- Hint of larger R_{AA} than prompt D_s^+ and non-prompt D^0 mesons in the low p_T region
 - > Non-prompt D_s^+ mesons: about 50% originate from B_s^0 meson decays -> Interplay of charm and beauty energy loss and recombination in the medium

28/09/2021

• $R_{AA}(D_s^+)/R_{AA}(D^0)$ ratio for non-prompt above one at low p_T

ALICE

28/09/2021

- > Non-prompt D_s^+ mesons: about 50% originate from B_s^0 meson decays -> beauty hadronisation via coalescence
- > Larger $R_{AA}(B_s^0)/R_{AA}(B^+)$ ratio w.r.t non-prompt D -> B to D decay kinematics or D_s^+ from non-strange B-meson decay

28/09/2021

16

- Beauty production studied via non-prompt measurements in different systems
 - pp collisions:
 - Beauty-quark production described by FONLL and NNLO calculations over a wide interval of center-ofmass energies
 - Pb-Pb collisions:
 - > Beauty quarks undergo energy loss in the medium \rightarrow important constraint of mass dependence of ΔE
 - Measurement described by models that include collisional and radiative energy loss
- Even at the end of Run2, several interesting non-prompt measurements are still ongoing
 - > Non-prompt Λ_c^+ , $f_{non-prompt}$ vs multiplicity, non-prompt $D^0 v_2$ in Pb-Pb (foreseen in QM 2022)
- Looking forward to see more precise and fully reconstructed beauty production in Run3

BACK UP

APW 2021 - X.Peng

Testing-1: b quark energy loss using mass of charm (keep b quark coalesce unchanged)
Testing-2: b quark coalesce using mass of charm (keep b quark energy loss unchanged)
Testing-3: Calculate the double ratio without shadowing (but keep all other parameters, e.g., quark masses, unchanged)
Testing-4: Calculate double ratio without recombination in hadronization

28/09/2021

APW 2021 – X.Peng

Ratio of the D_S R_{AA} of non-prompt to prompt

- Ratio of the R_{AA} of non-prompt to prompt **D**_S (beauty/charm)
 - Described by the TAMU prediction within uncertainties

28/09/2021

New strategy of non-prompt selection

20

- Multi-class Boosted Decision Trees (BDT) employed to separate prompt D mesons, non-prompt D mesons and combinatorial background
 - different BDTs for $\rm D^0$, $\rm D^+$ and $\rm D_s^+$ mesons and for different transverse-momentum ($p_{\rm T}$) intervals

Prompt/Non-prompt D_s^+ from MC, bkg. from data

- BDT input: candidate kinematic, geometrical and PID quantities
- BDT output: 3 scores related to the candidate probability to be prompt, non-prompt and background
- Selections applied on these scores to reduce combinatorial background and reject prompt or non-prompt D mesons

- R_{AA} measured for b \rightarrow D⁰ in 0-10% and 30-50% Pb-Pb collisions at 5.02 TeV
 - \succ Suppression of $b \rightarrow D^0$ observed
- Hint of ordering $R_{AA, b \rightarrow D^0} > R_{AA, c \rightarrow D^0}$ at intermediate p_T
- R_{AA} (0-10%) < R_{AA} (30-50%)
- Theoretical models that include collisional and radiative energy loss describe the data within uncertainties

ALICE

TAMU: PLB 735 (2014) 445

MC@sHQ+EPOS2: PRC 89 (2014) 014905

1804.01915; 1808.05461

CUJET3: arXiv:1411.3673; 1508.00552;