第七届中国LHC物理研讨会

Non-prompt J/ ψ production as a function of multiplicity in pp collisions at $\sqrt{s} = 13$ TeV with **ALICE**

guowenda@mails.ccnu.edu.cn

Wenda Guo **Central China Normal University** Nov 27 2021

Motivation

- Experimental setup
- Analysis Procedure
- Results
- Summary and outlook

Content

- The study of the production of hidden and open heavy-flavour hadrons in proton–proton (pp) collisions provides an essential test of QCD, involving both the perturbative and non-perturbative regimes of this theory. • In particular, the production of the J/ ψ meson is the subject of many theoretical calculations. The cornerstone of all the theoretical approaches is the factorization theorem, since the heavy hadron production with large $p_{\rm T}$, the $c\bar{c}$ pair production cross section can be computed perturbatively, and there're lots of models to describe it.
- The inclusive J/ψ yield measured at hadron colliders can be considered as originating from different processes which can be separate prompt and non-prompt charmonium.
- Non-prompt J/ ψ production is directly related to open beauty hadron production cross section :
- Study prompt charmonium production mechanisms
- Accurately calculate B hadron decay at low $p_{\rm T}$

Motivation

- The event-multiplicity dependent production of charmonium and open charm hadrons in pp and p–Pb collisions are observables having the potential to give new insights on processes at the parton level.
- The general observation is an increase of open and hidden charm production with charged-particle multiplicity measured at midrapidity.
- Several theoretical models can predict a correlation of the normalized J/ψ production with the normalized event multiplicity which is stronger than linear.
- We expect to see how non-prompt spectra increase with multiplicity and the dependence.

Motivation

Nov. 27 2021

at 7 TeV and 13 TeV of

CLHCP2021 * Wenda Guo (CCNU)

Motivation

Time Projection Chamber (TPC):

tracking, PID via dE/dx

Inner Tracking System (ITS):

- vertexing, tracking, triggering
- which include SPD SSD SDD 3 subdetectors.
- **SPD** :
- good vertex resolution and multiplicity estimator ($|\eta| < 1$)

•VZERO:

amplitude measured in the VOA

 $(2.8 < \eta < 5.1) + VOC (-3.7 < \eta < -1.7)$ arrays,

and as multiplicity estimator

Multiplicity estimation

• Correction for vtxz dependence of the number of SPD tracklets Due to the acceptance of SPD detector, and inactive channels, $\langle N \rangle_{\text{SPDtrklets}}$ has dependence with Zvtx, also due to SPD performance it's also dependent with run number, so we should correct it by following formula:

 $n_{\rm trk}^{\rm corr} = n_{\rm trk} + {\rm Possion}(\Delta n_{\rm trk})$ where

Average Number of SPD tracklets in Inl<1 in all run groups(profiles vs Z vertex)

CLHCP2021 * Wenda Guo (CCNU)

Nov. 27 2021

$$\Delta n_{\text{trk}} = \left(\frac{n_{\text{trk}}^{\text{ref}}}{\langle N_{\text{trk}} \rangle (\text{vtxz}, \text{run})} - 1\right) * n_{\text{trk}}$$

Uncorr NSPDtrklet Distribution

Corr NSPDtrklet Distribution

 $_{\odot}$ To select events based on the primary charged-particle multiplicity, the number of SPD tracklets in $|\eta| < 1$ is used. And it should determined by the correlated number of reconstucted SPD tracklets.

Correlation of charged-particle mulipliticy vs SPD tracklets

Nov. 27 2021

Multiplicity estimation

Non-prompt J/*y* separation

The J/ ψ candidates are formed by considering all opposite charged dielectron pairs. The inclusive J/ ψ yield measured at hadron colliders can be considered as originating from three main different processes, which include prompt and non-prompt collision procedure: prompt -> direct produce.

non-prompt -> B hadron decay.

Prompt J/\psi mesons are separated from those orignating from beauty hadrons decay, exploiting the displacement between the primary vertex of J/ψ.

The measurement of fraction of J/ψ mesons originating from beauty-hadron decays is named $f_{\rm B}$, which is after efficiency correction applied on the measured results $f_{\rm B}^{\rm uncorrected}$, which is carried out through an unbind two-dimensional likelihood fit procedure, which is applied on invariant mass and pseudo-proper decay length of J/ψ .

J/ψ The pseudo-proper decay length (x) is defined as

$$x = \frac{c \cdot L \cdot \hat{p}_{\mathrm{T}} \cdot M_{\mathrm{J/\psi}}}{|\vec{p}_{\mathrm{T}}|}$$

Nov. 27 2021

$$\mathbf{B}$$

Track and pair candidate selection

Decay channel : $J/\psi \rightarrow e^+e^-$

Track selection : select dielectric pair candidates Criteria:

In the second second

remove combinatorial background from low- $p_{\rm T}$ electrons

In the second second

ITS, TPC, and Impact parameter requirement

electron identification

TPC dE/dx

• rejection of electrons from photon conv.

Pairing candidate:

|y| < 0.9, $p_{\rm T} \in [1.0, 15.0] \text{ GeV/}c$

daughters of candidate have at least one hit in two of SPD layers

Nov. 27 2021

Variables	Cut values
η	< 0.9
p _T	>1.0 GeV/ <i>c</i>
DCAxy	<0.5 cm
DCAz	<2.0 cm
TPC nσ _e	[-3,3]
TPC nσ _π	>3.5
TPC nσ _p	>3.5
reject kinks	yes
request ITS refit	yes
request TPC refit	yes
request SPDany	yes
TPC χ ²	[0,4]
ITS $ \chi^2 $	[0,36]
TPC Ncls.	[70,160]
ITS Ncls. shared	[0,1]

 $ln{I$

its components

$$F(x, m_{e^+e^-}) = f_{\text{Sig}} \cdot F_{\text{Sig}}(x) \cdot M$$

Nov. 27 2021

Likelihood fit

$$L\} = \sum_{i=1}^{N} \ln\{F(x^{i}, m_{e^{+}e^{-}}^{i})\}$$

 $M_{\rm Sig}(m_{\rm e^+e^-}) + (1 - f_{\rm Sig}) \cdot F_{\rm Bkg}(x) \cdot M_{\rm Bkg}(m_{\rm e^+e^-})$

 $ln{I$

its components $F(x, m_{e^+e^-}) = f_{\text{Sig}} \cdot F_{\text{Sig}}(x) \cdot M$ Entries/20μn 0 where, N is J/ψ number $F_{\text{Sig}} = f'_{\text{B}} \cdot F_{\text{B}} + (1 - f'_{\text{B}}) \cdot F_{\text{Prompt}}$ $F_{\text{Prompt}} = \delta(x') \otimes R(x' - x) = R(x)$ 10⁴ $F_B(x) = \chi_B(x') \otimes R(x)$ 10³ 10² 7000 5000 6000 -10001000 2000 3000 4000 0 pseudoproper decay length [µm]

Nov. 27 2021

Likelihood fit

$$L\} = \sum_{i=1}^{N} \ln\{F(x^{i}, m_{e^{+}e^{-}}^{i})\}$$

$$M_{\text{Sig}}(m_{e^+e^-}) + (1 - f_{\text{Sig}}) \cdot F_{\text{Bkg}}(x) \cdot M_{\text{Bkg}}(m_{e^+e^-})$$

 $ln{I$

its components

where, N is J/ψ number $F_{\text{Sig}} = f'_{\text{B}} \cdot F_{\text{B}} + (1 - f'_{\text{B}}) \cdot$ $F_{\text{Prompt}} = \delta(x') \otimes R(x' - x)$ $F_B(x) = \chi_B(x') \otimes R(x)$

Nov. 27 2021

Likelihood fit

$$L\} = \sum_{i=1}^{N} \ln\{F(x^{i}, m_{e^{+}e^{-}}^{i})\}$$

 $ln{I$

its components

Entries/40MeV

Nov. 27 2021

Likelihood fit

L} =
$$\sum_{i=1}^{N} \ln\{F(x^{i}, m_{e^{+}e^{-}}^{i})\}\$$

$$M_{\text{Sig}}(m_{\text{e}^+\text{e}^-}) + (1 - f_{\text{Sig}}) \cdot F_{\text{Bkg}}(x) \cdot M_{\text{Bkg}}(m_{\text{e}^+\text{e}^-})$$

CLHCP2021 * Wenda Guo (CCNU)

Nov. 27 2021

We use the likelihood function $\ln\{L\} = \sum \ln\{F(x^i, m_{e^+e^-})\}$ to estimate the most "proper" parameters to describe the

fraction of components of prompt and non-prompt J/ ψ PDFs, which can retrieve the $f_{R}^{uncorrected}$ factor from

measured inclusive J/ψ raw yield.

Likelihood fit

As the raw measured reconstructed number of SPD tracklets convert to primary charged-particle multiplicity,

we get the $f_{\rm B}^{\rm uncorrected}$ vs $(dN_{\rm ch}/d\eta)/\langle dN_{\rm ch}/d\eta\rangle$

CLHCP2021 * Wenda Guo (CCNU)

Nov. 27 2021

min $n_{\rm trk}^{\rm corr}$	max n_{trk}^{corr}	$\langle N_{\rm ch} \rangle / \langle n_{\rm ch,INEL>0} \rangle$
4	10	0.393 ± 0.005
11	20	1.227 ± 0.017
21	30	2.109 ± 0.031
31	40	2.981 ± 0.046
41	50	3.786 ± 0.055
51	60	4.588 ± 0.071
61	70	5.373 ± 0.080
71	80	6.174 ± 0.102
81	100	7.136 ± 0.110

16

As the raw measured reconstructed number of SPD tracklets convert to primary charged-particle multiplicity,

we get the $f_{\rm B}^{\rm uncorrected}$ vs $(dN_{\rm ch}/d\eta)/\langle dN_{\rm ch}/d\eta\rangle$

CLHCP2021 * Wenda Guo (CCNU)

Nov. 27 2021

Summary

- \odot Inclusive J/ ψ has been reconstructed in multiplicity intervals via number of SPD tracklets.
- \odot Uncorrected fraction of non-prompt J/ ψ has been retrieved via maximum likelihood fit method as a function of multiplicity.
- There is no significant dependence vs multiplicity (uncorrected $f_{\rm B}$), with non-negligible fluctuation, but with smaller statistic uncertainty than the one @ 7 TeV

Outlook

- Acceptance and efficiency correction via the efficiency study and test from MC (expected no much high) dependence with multiplicity).
- Continue the systematic uncertainty analysis.
- \odot Give non-prompt J/ ψ production measurement vs multiplicity.

Reference used in this presentation

- <u>https://alice-publications.web.cern.ch/node/6220</u>
- arXiv:2005.11123
- <u>https://alice-notes.web.cern.ch/node/876</u>
- <u>https://alice-notes.web.cern.ch/node/957</u>
- Fiorella Fionda. Presentation: Quarkonium production in proton-proton collisions with ALICE.
- Jon-Are Saetre's Master thesis.
- Steffen Georg Weber. Presentation: J/ψ production in pT bins vs event multiplicity in pp collisions at 13 TeV. https://indico.cern.ch/event/646995/ contributions/2628223.
- Ionut Cristian Arsene. Presentation: Multiplicity selection and correction in pp. https://indico.cern.ch/event/667302/contributions/2727832/. • ALICE Collaboration, S. Acharya et al., "Prompt and non-prompt J/ ψ production and nuclear modification at mid-rapidity in p–Pb collisions at $\sqrt{sNN} = 5.02$ TeV", Eur. Phys. J. C 78 no. 6, (2018), arXiv:1802.00765 [nucl-ex].
- ALICE Collaboration, S. Acharya et al.,""Multiplicity dependence of inclusive J/ψ production at midrapidity in pp collisions at 13 TeV", Phys. Lett. B 810(2020), arXiv:2005.11123 [nucl-ex].

Nov. 27 2021

Thank you! 第七届中国LHC物理研讨会

