LHCb 实验利用瞬发产生过程 测量粲重子 Ω_c^0 和 Ξ_c^0 的寿命

许傲 代表 LHCb 中国组

北京大学

第七届中国 LHC 物理研讨会

Lifetimes of weakly-decay singly charmed baryons

- Lifetime hierarchy in the past 20 years
 - Precisions in the range of 3–17%

- LHCb measurements with 2011–12 data changed the landscape dramatically
 - Use signals from semileptonic *b*-hadron decays
 - Precisions in the range of 1–10%
- Independent measurements helpful to understand the large discrepancy in Ω⁰_c and Ξ⁰_c lifetimes

LHCb SL

Lifetimes of weakly-decay singly charmed baryons

[PRL 121 (2018) 092003] Lifetime hierarchy in the past 20 years LHCb Signal yield / 0.04 ps $\Omega_{b}^{-} \rightarrow \Omega_{c}^{0} \mu^{-} \nabla X$ Precisions in the range of 3–17% $\tau(\Omega_c^0) < \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Xi_c^+) \xrightarrow{\mathfrak{s}_c^+ (\mathsf{PDG}, 2018)} \xrightarrow{\bullet} \mathfrak{s}_c^* (\mathsf{LHCb}, 2019)$ Λ_c⁺ (PDG, 2018) * Λ_c⁺ (LHCb, 2019) $\tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Omega_c^0) < \tau(\Xi_c^+)$ Ξ⁰_c (PDG, 2018) → Ξ⁰_c (LHCb, 201 0.4 0.6 Ω_c^0 decay time [ps] (PDG, 2018) ----Ω⁰_c (LHCb, 2018) 400 200 600 [PRD 100 (2019) 032001] lifetime [fs] Signal yield / 0.01 ps LHCb $\Xi_{b}^{-} \rightarrow \Xi_{c}^{0} \mu^{-} \nabla X$ I HCb measurements with 2011–12 data - Data changed the landscape dramatically Use signals from semileptonic *b*-hadron decays 10 Precisions in the range of 1-10% Ξ_{c}^{0} decay time [ps] Independent measurements helpful to understand LHCb SL

Lifetimes of weakly-decay singly charmed baryons

[PRL 121 (2018) 092003] Lifetime hierarchy in the past 20 years LHCb Signal yield / 0.04 ps $\Omega_{b}^{-} \rightarrow \Omega_{c}^{0} \mu^{-} \nabla X$ Precisions in the range of 3-17% $\tau(\Omega_c^0) < \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Xi_c^+) \xrightarrow{\mathfrak{s}_c^+ (\mathsf{PDG}, 2018)} \xrightarrow{\bullet} \mathfrak{s}_c^* (\mathsf{LHCb}, 2019)$ Λ_c⁺ (PDG, 2018) * Λ_c⁺ (LHCb, 2019) $\tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Omega_c^0) < \tau(\Xi_c^+)$ Ξ° (PDG, 2018)----• =⁰ (LHCh 20) 0.4 0.6 Ω_c^0 decay time [ps] (PDG, 2018) ----Ω_c⁰ (LHCb, 2018) 200 400 600 [PRD 100 (2019) 032001] lifetime [fs] Signal yield / 0.01 ps LHCb $\Xi_{b}^{-} \rightarrow \Xi_{c}^{0} \mu^{-} \nabla X$ I HCb measurements with 2011–12 data - Data changed the landscape dramatically Use signals from semileptonic *b*-hadron decays 10 Precisions in the range of 1–10% Ξ_{c}^{0} decay time [ps] Independent measurements helpful to understand LHCb SL the large discrepancy in Ω_c^0 and Ξ_c^0 lifetimes

Measurement of Ω_c^0 and Ξ_c^0 lifetimes

- Independent from LHCb SL
 - (Data) $\mathcal{L} = 5.4 \, \text{fb}^{-1}$ LHCb data collected in 2016–18
 - (Method) Prompt Ω_c^0/Ξ_c^0 signals through $pK^-K^-\pi^+$ decays
- Results not examined until full procedure had been finalised
- Method in a nutshell
 - 1. Determine signal yield in bins of decay time

$$t = m \times \frac{\vec{p} \cdot \vec{r}}{p^2}$$

2. Determine lifetime with least chi-square fit

$$\chi^{2}(\tau) = \sum_{i} \frac{\left(N_{i}^{\text{sig}} - N_{i}^{\text{exp}}\right)^{2}}{\sigma_{N_{i}^{\text{sig}}}^{2} + \sigma_{N_{i}^{\text{exp}}}^{2}}$$

[arXiv:2109.01334]

Boost in signal yield

• Prompt $\Omega_c^0/\Xi_c^0 \to pK^-K^-\pi^+$ decays

• Signals produced directly from *pp* collisions (PV)

Prompt

Secondary

	Fixed target	LHCb SL	LHCb prompt
Ω_c^0	180	1 K	12 K
Ξ_c^0	160	22 K	36 K

Combinatorial: random combination of tracks

- Linear in the invariant-mass distribution
- Secondary: true signals from *b*-hadron decays
 - Larger peak positions in the logorithm of $\chi^2_{\rm IP} \approx \frac{IP^2}{\sigma_{\perp}^2}$

- Efficiency of selection criteria is different at different decay time
 - Need to be considered for an unbiased estimation of decay time
- Simulated signal samples used to evaluate efficiency
- $D^0 \to K^- K^+ \pi^- \pi^+$ as normalisation channel to further reduce systematic uncertainties

Least chi-square fit to decay time

Chi-square

$$\chi^{2}(\tau) = \sum_{i} \frac{\left(N_{i}^{\text{sig}} - N_{i}^{\text{exp}}\right)^{2}}{\sigma_{N_{i}^{\text{sig}}}^{2} + \sigma_{N_{i}^{\text{exp}}}^{2}}$$

- N_i^{sig} is signal yield in decay-time bin *i*
- N_i^{exp} is expected yield in decay-time bin *i*

$$N_i^{ ext{exp}} = M_i^{ ext{sig}} imes rac{\int_i \exp(-t/ au) \mathrm{d}t}{\int_i \exp(-t/ au_{ ext{sim}}) \mathrm{d}t} imes rac{N_i^{ ext{con}}}{M_i^{ ext{con}}}$$

Unbiased estimator validated with pseudo-experiment

Signal yields per ps in decay-time bins

- D^0 lifetime measured with normalisation channel $D^0 o K^- K^+ \pi^- \pi^+$
 - Good agreement with its world average
- Consistent results measured with sub-samples split by
 - Data-taking periods
 - Magnetic polarities of the LHCb dipole magnet
- Consistent results measured with
 - Different decay-time binning scheme
 - Different lifetime assumption in simulation

Systematic uncertainties

 Dominant uncertainties stem from fit model and difference between data and simulation

Sources	$ au_{\Omega^0_c}$ [fs]	$ au_{\Xi_c^0}$ [fs]
Fit model	2.2	1.0
Kinematic correction	3.4	0.4
Decay-time resolution	1.3	1.8
$\chi^2_{ m IP}$ scaling	1.1	0.5
Calibration sample size	0.1	0.1
Decay-length scale	0.1	0.1
$D^0 - \overline{D}^0$ mixing	0.8	0.6
Total systematic uncertainty	4.4	2.2
D^0 lifetime	0.7	0.2
Statistical uncertainty	13.4	2.3

$$\begin{split} \tau_{\Omega_c^0} &= 276.5 \pm 13.4 (\text{stat}) \pm 4.4 (\text{syst}) \pm 0.7 (D^0) \,\text{fs} \\ \tau_{\Xi_c^0} &= 148.0 \pm 2.3 (\text{stat}) \pm 2.2 (\text{syst}) \pm 0.2 (D^0) \,\text{fs} \end{split}$$

- Most precise measurement of Ω_c^0 lifetime so far
- Consistent with LHCb SL measurements

• Is Heavy Quark Expansion still valid in the Ω_c^0 system? [#XW2109.01216]

Summary

- Lifetimes of Ω_c^0 and Ξ_c^0 are measured precisely
- New hierarchy of charmed baryons established

Accepted by Science Bulletin 由中国科学院国家自然科学基金委员会主办

CERNCOURIER VOLUME 61 NUMBER 4 JULY/AUGUST 2021

THE

New charmed-barvon lifetime hierarchy cast in stone

New, a follow-up measurement by the 12018/180

lifetizzes has long been thought to be Fig. 1 Measurements af cherned-barren lifetimes/ram +(R:) > +(A:) > +(R:) > +(R:), based on . Since coper experiments (PDI as all and/somether.IPD)

but probably due to even higher order Parther reading

Reported by CERN courier

北京大学 许傲

12/12

BACKUP

The LHCb detector

A single-arm forward spectrometer at LHC

LHCb data taking

• About $\mathcal{L} = 9 \, \text{fb}^{-1}$ data accumulated in Run 1–2

Year