

Study of coherent J/ ψ production in ultra-peripheral lead-lead collisions at $\sqrt{s_{NN}} = 5$ TeV

Xiaolin Wang South China Normal University

The 7th China LHC Physics Workshop Nov 25-28, 2021

Xiaolin Wang(SCNU)

LHCb Detector

> LHCb detector is a single-arm forward spectrometer fully instrumented in unique

HeRSCheL detector

- → HeRSCheL(**High Rapidity Shower Counters for LHCb**), is a set of plastic scintillators used in order to detect any activity in high pseudo-rapidity range, typically $\eta \gtrsim 8$.
- \succ Remove background activities close to beam.
- Also used to cut component with large momentum.
- ➤ May also cut a small fraction of signal.

Ultra-peripheral PbPb Collisions

Ultra-Peripheral Collisions(UPCs):

- Occur when two nuclei collide, in which the impact parameter b is greater than the sum of their radii.
- Reactions in which two ions interact via their cloud of semi-real photons.

➢ Photon-induced quarkonium production: A qq̄ loop created by the photon interaction with a pair of gluon exchange (pomeron) to produce a quarkonium(cc̄, bb̄).
➢ Non-resonant background: γγ→ μ⁺μ⁻

11/27/2021

J/ψ production in UPC

 \triangleright Coherent J/ ψ production, the emitted photon interacts coherently with the whole nucleus.

- \blacktriangleright Incoherent J/ ψ production, the photon interacts with one nucleon leading to the break up of the target nucleus.
- \searrow J/ ψ from the feed-down of coherent and incoherent $\psi(2S)$ production.

Characteristics of coherent J/ψ production: \succ

- No additional particle production $(Pb + Pb \rightarrow Pb +$ $Pb + I/\psi$).
- low I/ψ mesons transverse momentum.

Coherent J/ ψ production

Incoherent J/ ψ production

Pb

Physics motivation

- > Probe gluon distribution at low Bjorken-x and search for saturation effects.
- \blacktriangleright In gamma-nucleus the vector meson production (such as the J/ ψ) is sensitive to the square of the nuclear gluon density at the leading order of perturbation.
- \triangleright Coherent J/ ψ production constrains the gluon Parton Distribution Functions.
- \blacktriangleright Coherent photoproduction in PbPb is a promising probe to study nuclear

shadowing effect at small-x.

Analysis strategy

- > Decay channel: $J/\psi \rightarrow \mu^+\mu^-$ events.
- > Dataset: lead-lead collisions at $\sqrt{s} = 5$ TeV taken in 2015. Integrated luminosity is $10.12 \pm 1.31 \ \mu b^{-1}$.
- > Definition of J/ψ cross section:

$$\frac{d\sigma_{cohJ/\psi}}{dy} = \frac{N_{cohJ/\psi}}{\varepsilon_{total} \cdot \mathcal{B}(J/\psi \to \mu^+\mu^-) \cdot \mathcal{L} \cdot \Delta y}$$

Dimuon mass fits

- J/ ψ mass window 3032 < $m_{\mu^+\mu^-}$ < 3162 MeV
- Double-side Crystal Ball function for the mass peaks
- $J/\psi \rightarrow \mu^+ \mu^-$ and $\psi(2S) \rightarrow \mu^+ \mu^-$
- > Exponential function for the background:
- $\gamma\gamma \rightarrow \mu^+\mu^-$
- Selection is defined as:
- Each muon $p_T > 800$ MeV, $2 < \eta < 4.5$; Di-muon $p_T < 1$ GeV; Muon $|\Delta \varphi_{\mu^+ \mu^-}| > 0.9\pi$;
- Event selection for $\mu^+\mu^-$ in final state with only two long tracks reconstructed: nLongTracks = 2;
- Herschel detector is used to further reduce the multiplicities, applying the herschel cut is very useful to cut the incoherent part in mass window: $ln(\chi^2_{HRC}) < 7$. 11/27/2021 Xiaolin Wang(SCNU) 8

MeV

Candidates /

$log(P_T^2)$ fits to extract the coherent component

• The $\log p_T^2$ distribution of di-muon candidates in the interval 2.5 < y < 3.0, with p_T given in GeV.

$$\begin{aligned} f(log(p_{\mathrm{T}}^2)) &= n_{\mathrm{coh}} \cdot F_{\mathrm{coh}}(log(p_{\mathrm{T}}^2)) + n_{\mathrm{incoh}} \cdot F_{\mathrm{incoh}}(log(p_{\mathrm{T}}^2)) \\ &+ n_{\mathrm{feed}} \cdot F_{\mathrm{feed}}(log(p_{\mathrm{T}}^2)) + n_{\mathrm{non-reso.}} \cdot F_{\mathrm{non-reso.}}(log(p_{\mathrm{T}}^2)). \end{aligned}$$

J/ ψ coherent: 489 \pm 25

- Fit on the $\log p_T^2$ of J/ ψ :
 - Including coherent and Incoherent J/ψ component, $\psi(2S)$ feed down and non-resonant part.
- All signal and background pdfs are estimated using the STARlight generator and the LHCb detector simulation.
- The non-resonant yields are extracted from the di-muon mass fits.
 - STARlight is a Monte Carlo generator that simulates two-photon and photon-Pomeron interactions between relativistic nuclei and protons.

in rapidity intervals

> Total and coherent J/ ψ yields after the invariant mass and the transverse momentum fits, in J/ ψ rapidity intervals:

Rapidity y	Total J/ψ yield	Coherent J/ψ yield
2.0 - 2.5	69 ± 9	53 ± 8
2.5 - 3.0	208 ± 15	153 ± 14
3.0 - 3.5	233 ± 16	176 ± 15
3.5 - 4.0	131 ± 12	95 ± 11
4.0 - 4.5	32 ± 6	12 ± 5

[arXiv:2107.03223]

Results of cross section

> Measured cross section with statistical, systematic and luminosity uncertainties measured as a function of the J/ψ rapidity:

y interval	$\sigma \; [\mathrm{mb}]$	Stat. [mb]	Syst. [mb]	Lumi. [mb]
2.0 - 4.5	4.45	0.24	0.18	0.58
2.0 - 2.5	1.35	0.19	0.06	0.17
2.5 - 3.0	1.09	0.09	0.05	0.14
3.0 - 3.5	0.89	0.07	0.04	0.12
3.5 - 4.0	0.65	0.06	0.03	0.08
4.0-4.5	0.48	0.09	0.02	0.06

[arXiv:2107.03223]

Compare with theoretical predictions

Compare results between LHCb and ALICE

Signal definition:

- \succ LHCb: Veto all additional radiation.
- > ALICE: Also allows nuclear excitations.

Uncertainty:

\succ LHCb:

- Dominant uncertainty arises from the luminosity.
- All the systematic uncertainty is correlated.

> ALICE:

- Dominant uncertainty originates form the signal purity estimate.
- Systematic uncertainty partially correlated.

$$\frac{\sigma_{Alice} - \sigma_{LHCb}}{\sqrt{\sigma_{\sigma_{LHCb}}^2 + \sigma_{\sigma_{Alice}}^2}} = 1.3$$

2018 Data Set

	2015	2018
\sqrt{s}	5 TeV	5 TeV
	PbPb	PbPb
L	10 µ <i>b</i> ⁻¹	~ 228 µ <i>b</i> ⁻¹

The 20 times higher statistics make it possible to determine the crosssections of both J/ψ and ψ(2S), as well as in 5 rapidity bins.

Cross-section ratio:

 $\frac{\sigma_{coh,J/\psi}}{\sigma_{coh,\psi(2S)}} = \frac{N_{J/\psi} \cdot \varepsilon_{\text{total}} \cdot \mathcal{B}(J/\psi \to \mu^+ \mu^-)}{N_{\psi(2S)} \cdot \varepsilon_{\text{total}} \cdot \mathcal{B}(\psi(2S) \to \mu^+ \mu^-)}$

11/27/2021

Xiaolin Wang(SCNU)

 \blacktriangleright About 20 times more statistics in 2015.

- Charmonium production in Ultra-peripheral PbPb collisions is of particular interests to probe gluon parton distribution functions.
- ▶ Results based on 2015 PbPb dataset at 5 TeV are presented. [arXiv:2107.03223]
- > Higher precision results using 2018 dataset with 20 times higher statistics for both the J/ ψ and ψ (2S) cross section are coming soon.

Thanks!

Back up