

J/ψ production cross-sections in *pp* collisions at $\sqrt{s} = 5$ TeV

Li XU

Tsinghua University

CLHCP, Nov 25-28, 2021

LHCb detector

- Single-arm forward spectrometer
- Designed for the study of *b* and *c* physics
- Forward region $2 < \eta < 5$

 $_{\odot}$ ~4% of solid angle, but ~25% of $b\overline{b}$ quark pairs accepted

- Data collection
 - \circ Totally ~9 fb⁻¹ pp collision data at 5/7/8/13 TeV

J/ψ production at LHCb

- Prompt J/ψ :
 - originate from the primary pp collision vertex
- J/ψ from b:
 - originate from *b*-decay vertex (secondary vertex)
- Vertex Locator at LHCb can separate primary and secondary vertices

J/ψ production in *pp* collisions at 5 TeV

Accepted by JHEP, arXiv:2109.00220

- Motivation
- Analysis strategy
- Systematic uncertianty
- Cross-sections
- Nuclear modification factor R_{pPb}

Motivation: probe QCD

• Prompt J/ψ : probe J/ψ production mechanism $\circ c\bar{c}$ pair production: perturbative QCD

 \odot Hadronisation: non-perturbative QCD

- Non-Relativistic QCD (NRQCD)
 - Long-distance matrix element (LDME)

✓ Describe the transition probability that the $c\bar{c}$ pair evolves into a J/ψ

- ✓ Determined from experimental data
- > NRQCD fails to describe the low $p_{\rm T} \lesssim M_{J/\psi}$ region
- \succ Color glass condensate (CGC) effects are combined with NRQCD at low $p_{\rm T}$

Motivation: probe QCD

• J/ψ from b: probe b-quark production mechanism $\circ \sigma(J/\psi \text{ from } b) = \sigma(b\overline{b}) \times 2\mathcal{B}(b \to J/\psi X)$

• Fixed Order plus Next-to-Leading Logarithms (FONLL)

 Reference for cold/hot nuclear matter effect studies in proton-lead and lead-lead collisions

 \circ Both for prompt J/ψ and J/ψ from b

 \circ Nuclear modification factor in pPb collisions

$$R_{pPb}(y) = \frac{1}{A} \frac{d\sigma_{pPb}/dy}{d\sigma_{pp}/dy}$$
, where A = 208

Analysis strategy

- Differential cross-section:
 - $\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}y\mathrm{d}p_{\mathrm{T}}} = \frac{N(J/\psi \to \mu^{+}\mu^{-})}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \times \Delta y \times \Delta p_{\mathrm{T}}}$
- Kinematic range: $0 < p_{\rm T} < 20~{\rm GeV}/c$, 2.0 < y < 4.5
- Two-dimentional fit to **mass** and **pseudo decay time** t_z

Systematic uncertainty

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}y \mathrm{d}p_{\mathrm{T}}} = \frac{N(J/\psi \to \mu^+ \mu^-)}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \times \Delta y \times \Delta p_{\mathrm{T}}}$$

Source	Relative uncertainty (%)	Source	Relative uncertainty (%)
Signal mass model	< 2.0	Tracking efficiency	(< 3.7)⊕1.6
Background mass model	< 0.7	PID efficiency	(< 2.2)⊕(< 1.5)
Signal t_z model	prompt J/ψ : < 0.8	Trigger efficiency	(< 1.9)⊕1.0
	J/ψ from $b: < 14.7$	Radiative tail	1.0
Background t_z model	prompt J/ψ : < 1.2 J/ψ from b : < 4.0	Simulation sample size	prompt J/ψ : < 3.7 J/ψ from b : < 7.7
Luminosity	2.0	Branching fraction	0.6
	1 • 1 7 / /		arXiv:2109.00220

- Polarisation: assume unpolarised J/ψ
 - Only small longitudinal polarisations have been found ($\lambda_{\theta} \sim -0.2$, consistent with 0)
 - Assume $\lambda_{\theta} = -0.2$, integrated cross-sections decrease by 2.8%
 - Taken as the reference, rather than the uncertainty

Cross-sections at 5 TeV

• Integrated cross-sections ($0 < p_T < 20 \text{ GeV}/c$, 2.0 < y < 4.5)

• Low p_T : combine NRQCD with color glass condensate (CGC) effective theory Phys. Rev. Lett. 113, 192301

- The inclusion of CGC effects achieves a reasonable agreement between data and theory for prompt J/ψ
- Good agreement with predictions both for

Eur. Phys. J. C75 (2015) 610

Cross-section ratio

- Ratio between 13 TeV and 5 TeV measurements
 - Experimental and theoretical uncertainties cancel a lot

arXiv:2109.00220

• Prompt J/ψ :

 \circ High $p_{\rm T}$: good agreement between data and NLO NRQCD

 \circ Low $p_{\rm T}$: a small discrepancy between data and CGC + NRQCD

- J/ψ from b: good agreement between data and FONLL
- Same conclusion for the ratio between 8 TeV and 5 TeV measurements

Nuclear modification factor R_{pPb}

- R_{pPb} at 5 TeV was calculated using interpolated pp collision cross-sections <u>JHEP 02 (2014) 072</u>
- R_{pPb} is updated using direct measured pp collision cross-sections
- Consistent with previous results

- A suppression is observed in the forward region, consistent with most predictions
- Much higher precision in the forward region than theoretical predictions, providing strong constraining power to improve nPDF modeling

Summary

- J/ψ production cross-sections in pp collisions at 5 TeV $_{\odot}$ Prompt J/ψ
 - $\hfill \ensuremath{\,^{\circ}}$ Good agreement with NLO NRQCD in the high $p_{\rm T}$ region
 - A small discrepancy between data and CGC+NRQCD in the low $p_{\rm T}$ region on the ratio $\sigma_{13~{\rm TeV}}/\sigma_{5~{\rm TeV}}$
 - $\circ J/\psi$ from b
 - Good agreement with FONLL
- Nuclear modification factor in pPb collisions
 - $\circ R_{pPb}$ is updated
 - \odot The results are consistent with most predictions

Thank you!

Backup Slides

Theroetical uncertainty

- NRQCD and CGC
 - Uncertainties due to LDMEs determination, renormalisation scales, and factorisation scales
 - Cancel most in ratios
- FONLL
 - PDFs uncertainties, the uncertainty due to the b-quark mass, and that due to the scales of renormalisation and factorisation

Cross-section ratio

- Prompt J/ψ :
 - High $p_{\rm T}:$ good agreement between data and NLO NRQCD
 - Low $p_{\rm T}$: a small tension between data and CGC + NRQCD
 - Need further corrections in the theory model?
- J/ψ from b: good agreement between data and FONLL