

 $VBF + E_T^{miss} + \gamma$

Han CUI Institute of High Energy Physics, Chinese Academy of Sciences

1

Introduction

- Moriond Conference : <u>ATLAS-CONF-2021-004</u>
- EPJC (under review) : <u>arXiv:2109.00925</u>
- Three signal process have the VBF+ $E_T^{miss} \! + \! \gamma$ final state
 - VBF H(->invisible) γ
 - Higgs portal of dark matter
 - First analysis of the process
 - VBF H($\rightarrow \gamma \gamma_d$)
 - Higgs portal of dark photon
 - First analysis ATLAS search
 - CMS <u>publication</u>
 - SM EW Z($\rightarrow \nu \nu)\gamma$
 - First observation > 5σ
 - One of the major backgrounds for H(- >invisible) γ and H($\rightarrow \gamma \gamma_d$)

Signal Signature for VBF+ E_T^{miss} + γ

- VBF topologies
 - 2 foward jets
 - high *m*_{jj} (>0.25 TeV)
 - large separation in η ($\Delta \eta > 3.0$)
 - Not back to back in $\phi~(\Delta\phi<2.5)$
- Large E_T^{miss} (>150 GeV)
- Single photon
 - high p_T ([15GeV,
 110GeV])
 - centered between jets in η ($C_{\gamma} > 0.4$)

- E_T^{miss} Definition: negative vectorial sum of transverse momenta of all selected objects
- C_{γ} photon centrality: $C_{\gamma} = \exp\left[-\frac{4}{(\eta_1 \eta_2)^2}\left(\eta_{\gamma} \frac{\eta_1 + \eta_2}{2}\right)^2\right]$

Backgrounds

- $V\gamma$ +jets (dominant)
 - $W(\rightarrow \ell \nu)\gamma$ +jets and $Z(\rightarrow \nu \nu)\gamma$ +jets
 - strong and EW (inc. triboson) contributions
- Other backgrounds
 - Jet faking photon (e.g. V+jets)
 - Electron faking photon (e.g. W+jets)
 - Jet faking electron (in $W_{e\nu}^{\gamma}\,{\rm CR})$
 - γ +jet (QCD multijets)

 $q \xrightarrow{q} 00000 g$ $\overline{q} \overline{q} \overline{z} \sqrt{v}$ $\overline{q} \overline{q} \overline{z} \sqrt{v}$ $\overline{q} \overline{q} \overline{z} \sqrt{v}$

Strong $Z(\rightarrow \nu \nu)\gamma + \text{jets}$

Event Selection

- Signal region:
 - + H
 ightarrow inv. , $Z(
 ightarrow
 u
 u) \gamma$
 - $H \rightarrow$ inv.: 4 SR bins in DNN score
 - $Z(\rightarrow \nu \nu)\gamma$: 4 SR bins in m_{jj}
 - $\bullet H \to \gamma \gamma_d$
 - Higgs-like mediators with mass in [60GeV, 2TeV]
 - Few differences from $H \rightarrow {\rm inv. \; SR}$
 - 10 SR bins in $m_T(E_T^{miss}, \gamma)$
- Control region:
 - 4 CRs are used to constrain background normalization in the fit
 - $W^{\gamma}_{\mu
 u}$ and $W^{\gamma}_{e
 u}$ CRs
 - $W(\rightarrow \ell \nu)\gamma$ events in SR have lost lepton
 - $Z^{\gamma}_{\text{Rev.Cen.}}$ CR
 - Strong $Z(\rightarrow \nu \nu)\gamma$ events in SR have central photon
 - Fake-e CR
 - $\mathrm{jet}/\gamma \to e$ background in $W^\gamma_{e\nu}\,\mathrm{CR}$

Fiducial Volume

- EW $Z(\rightarrow \nu\nu)\gamma$ + jets cross section measurement
- Very similar to the SR definition
- Particle-level requirements for stable particles before interaction with the detector but after hadronization
 - Dressed leptons are vetoed
 - Separated photon and Jets/lepton of $\Delta R > 0.4$
 - Truth- E_T^{miss} : vector sum of transverse momentum of all final state neutrinos

Observable	Requirements
$N_{\rm jet}$ with $p_{\rm T} > 25$ GeV	≥ 2
$ \eta(j_{1,2}) $	< 4.5
$p_{\mathrm{T}}(j_1)$ [GeV]	> 60
$p_{\mathrm{T}}(j_2)$ [GeV]	> 50
$\Delta R(j,\ell)$	> 0.4
$ \Delta \eta_{\rm jj} $	> 3.0
C_3	< 0.7
$m_{\rm jj}$ [TeV]	> 0.5
truth- $E_{\rm T}^{\rm miss}$ [GeV]	> 150
$\Delta \phi$ (truth- $\vec{E}_{T}^{\text{miss}}, j_i$)	> 1.0
$p_{\rm T}(\gamma)$ [GeV]	> 15, < 110
$ \eta(\gamma) $	< 2.37
$E_{\rm T}^{\rm cone20}/E_{\rm T}^{\gamma}$	< 0.07
$\Delta R(\gamma, \text{jet-or-}\ell)$	> 0.4
C_{γ}	> 0.4
$\Delta \phi$ (truth- $\vec{E}_{\rm T}^{\rm miss}, \gamma$)	> 1.8
N_ℓ with $p_{\rm T} > 4$ GeV and $ \eta < 2.47$	0

DNN Classification

- A Dense Neutral Network (DNN) is used for the $H \rightarrow$ inv. search
- DNN architecture: 3 blocks, each composed of: 1.dense layer, 2. ReLU activation function, 3. Batch Normalization, and 4. Droupout rate.
- DNN feature selection with backward elimination procedure
- 8 features selected
- DNN score ranges from 0 (background) to 1 (signal)
- ~ 20% improvement in sensitivity over cut-based approach

DNN architecture

Feature importance is quantified by the average variation in DNN output caused by a 10% upward/downward variation of the feature

Jet faking Photon

- W/Z+jets have contribution may due to the mis-identified of jets as photons.
 Estimated by the ABCD method
 - Comprises ~1% of SRs

1 SR: isolated-tight photon; **3** CRs: photon failed isolation or tightness

Data driven technique applied to get SR photon purity:

$$P = \frac{(M^B + N^A c_3 - N^B c_2 R_{MC} - M^A c_1 R_{MC})}{2N^A (c_1 c_2 R_{MC} - c_3)}$$
$$\cdot \left(-1 + \sqrt{1 + \frac{4(c_1 c_2 R_{MC} - c_3)(N^A M^B - N^B M^A R_{MC})}{(M^B + N^A c_3 - N^B c_2 R_{MC} - M^A c_1 R_{MC})^2}}\right)$$

Electrons Faking Photons

- V+jets gives contribution also due to misidentified electrons as photons.
- Comprised ~6% of $H \to$ inv. and $Z(\to \nu\nu)\gamma$ SRs, ~35% of $H \to \gamma\gamma_d$ SR
- Measured the fake rate of electrons being reconstructed as photons in the Z mass peak.

$$F_{e \to \gamma} = \frac{\epsilon(e^{true} \to \gamma^{reco})\epsilon_{\gamma}}{\epsilon(e^{true} \to e^{reco})\epsilon_{e}}$$

• Measurement in Z(->ee)+jet to determine the mis-construction rate by comparing the rate of Z reconstruction in $e^{\pm}\gamma$ and $e^{+}e^{-}$

•
$$F_{e \to \gamma} = \frac{N_{e\gamma}}{2N_{ee}}$$

 All e and γ from the ee/eγ/γγ pairs are classified in η and pT bins and invariant mass spectra are built.

Results

EWZ($\rightarrow \nu\nu$) γ + jets Measurement

- SR and CRs are binned in m_{jj}
 - 4 SR bins and 16 CR bins
 - 5.2 σ observation (5.1 σ exp.) of EW $Z(\rightarrow \nu\nu)\gamma$ + jets process
 - Signal strength $\mu_{Z\gamma}$ extraction
- Measure fiducial cross section of 1.31 ± 0.29 fb

$H \rightarrow \text{inv. Search}$

- SR and CRs are binned in DNN score
 - 4 SR bins and 15 CR bins
 - DNN [0, 0.25, 0.6, 0.8, 1]
- No evidence of a new physics contribution is observed
- Set upper limit on B_{inv} of 0.37 (0.35 expected)

$H \rightarrow \gamma \gamma_d$ Search

- 2 SRs: $m_{jj} < 1$ TeV, $m_{jj} > 1$ TeV
 - Different sensitivities to ggF/VBF production
- SRs are binned in $m_T(\gamma, E_T^{miss})$
 - 10 SR bins and 20 CR bins
- Set upper limit on $B(H \rightarrow \gamma \gamma_d)$ of 0.018 (0.017 expected)
- Set limits on cross section times branching fraction for Higgs-like mediator, which from 0.15 pb to 3fb for 60 GeV $< m_{H} < 2$ TeV

Summary

- Analysis of VBF $H(\to inv.)\gamma$, $H \to \gamma\gamma_d$, and EW $Z(\to \nu\nu)\gamma$ process in VBF+MET+ γ final state
- First search for VBF $H(\rightarrow inv.)\gamma$
 - DNN classification
 - Set upper limit on $B(H \rightarrow \text{inv.})$ of 0.37 (0.35 expected)
- First ATLAS search for $H\to\gamma\gamma_d$
 - Improved $B(H \rightarrow \gamma \gamma_d)$ limit compared to CMS combined result (1.8% vs. 2.9%)
- First observation of EW $Z(\rightarrow \nu\nu)\gamma$ + jets process with 5.2 σ significance
 - Fiducial cross section measurement: $1.31\pm0.29~{\rm fb}$
 - Will combine with SM VBS analysis for ~ 6.7σ expected significance

Back Up

Data yields and fitted predictions for EWK Zg

Process	Fake-e CR	W_{ev}^{γ} CR	$W^{\gamma}_{\mu\nu}$ CR	$Z_{\text{Rev.Cen.}}^{\gamma}$ CR	SR - m_{jj} [TeV]			
					0.25-0.5	0.5-1.0	1.0-1.5	≥ 1.5
Strong $Z\gamma$ + jets	8 ± 8	0 ± 1	3 ± 2	50 ± 12	20 ± 6	54 ± 12	13 ± 5	5 ± 2
EW $Z\gamma$ + jets	0.6 ± 0.2	0.3 ± 0.2	0.4 ± 0.2	7 ± 2	4 ± 1	30 ± 7	25 ± 5	36 ± 7
Strong $W\gamma$ + jets	43 ± 9	47 ± 9	133 ± 21	24 ± 6	22 ± 6	35 ± 10	9 ± 3	3 ± 1
EW $W\gamma$ + jets	19 ± 6	31 ± 7	59 ± 13	1.4 ± 0.5	2 ± 1	6 ± 1	4 ± 1	5 ± 1
$jet \rightarrow \gamma$	1 ± 1	2 ± 2	3 ± 2	2 ± 2	1 ± 1	2 ± 2	1 ± 1	0.4 ± 0.3
$jet \rightarrow e$	34 ± 17	5 ± 3	-	-	_	-	-	_
$e \rightarrow \gamma$	-	2.7 ± 0.4	2.9 ± 0.4	13 ± 1	6 ± 1	11 ± 1	2.6 ± 0.4	1.4 ± 0.3
γ + jet	-	-	-	0.7 ± 0.5	0.7 ± 0.5	0.4 ± 0.3	0.1 ± 0.1	0.1 ± 0.1
$t\bar{t}\gamma/V\gamma\gamma$	3 ± 1	9 ± 2	13 ± 2	3 ± 1	2 ± 1	4 ± 1	0.4 ± 0.2	0.1 ± 0.1
Fitted Yields	108 ± 10	96 ± 8	213 ± 14	102 ± 9	58 ± 6	143 ± 12	54 ± 5	52 ± 6
Data	108	95	216	100	52	153	50	52
Data/Fit	1.00 ± 0.14	0.99 ± 0.12	1.01 ± 0.09	0.98 ± 0.13	0.90 ± 0.15	1.07 ± 0.11	0.93 ± 0.16	0.99 ± 0.18

Data yields and fitted predictions for H-> inv.

Process	Fake-e CR	W_{ev}^{γ} CR	$W^{\gamma}_{\mu\nu}$ CR	Z ^γ _{Rev.Cen.} CR	SR - DNN output score			
					0-0.25	0.25-0.6	0.6-0.8	0.8-1.0
Strong $Z\gamma$ + jets	7 ± 4	0.3 ± 0.1	3 ± 1	55 ± 6	31 ± 6	53 ± 10	10 ± 2	0.9 ± 0.2
EW $Z\gamma$ + jets	0.6 ± 0.1	0.3 ± 0.1	0.4 ± 0.2	7 ± 1	14 ± 2	39 ± 5	29 ± 4	10 ± 2
Strong $W\gamma$ + jets	44 ± 7	46 ± 6.1	127 ± 13	20 ± 2	29 ± 6	31 ± 9	8 ± 2	0.1 ± 0.2
EW $W\gamma$ + jets	21 ± 3	35 ± 4	66 ± 7	1.5 ± 0.2	5 ± 1	8 ± 1	5 ± 1	1.2 ± 0.3
$jet \rightarrow \gamma$	1±1	2 ± 1	2 ± 2	2 ± 1	2 ± 2	2 ± 2	0.7 ± 0.8	-
$jet \rightarrow e$	32 ± 15	4 ± 2	-	-	-	-	-	-
$e \rightarrow \gamma$	-	2.6 ± 0.2	2.9 ± 0.2	13 ± 1	9 ± 1	9 ± 1	1.9 ± 0.2	0.3 ± 0.1
γ + jet	-	_	-	1.4 ± 0.5	0.7 ± 0.5	0.6 ± 0.4	0.04 ± 0.03	-
$t\bar{t}\gamma/V\gamma\gamma$	3 ± 1	8 ± 1	12 ± 2	3 ± 1	4 ± 1	2.4 ± 0.4	0.9 ± 0.2	0.01 ± 0.01
Fitted Bkg	108 ± 10	97 ± 7	214 ± 14	101 ± 7	93 ± 8	145 ± 11	55 ± 5	13 ± 2
$H\left(\mathcal{B}_{inv}=0.37\right)$	-	-	_	3.3 ± 0.4	2.6 ± 0.3	15 ± 2	14 ± 2	7 ± 1
Data	108	95	216	100	94	146	51	16
Data/Fit	1.01 ± 0.14	0.97 ± 0.12	1.01 ± 0.09	0.98 ± 0.12	1.01 ± 0.13	1.01 ± 0.11	0.92 ± 0.15	1.25 ± 0.35

Back Up

The contributions from different groups of systematic uncertainties to the 1 sigma uncertainty bands .The evaluation is performed by fixing a given group of systematic uncertainties to their best-fit values and subtracting the new variance (σ 2) of the best-fit value or the limit from the nominal variance including all systematic uncertainties.

Source	1σ Uncertainty on $\mu_{Z\gamma_{\rm EW}}$	1σ Uncertainty on \mathcal{B}_{inv}	1σ Uncertainty on $\mathcal{B}(H \to \gamma \gamma_d)$	
Jet scale and resolution	0.076	0.045	0.0011	
$V\gamma$ + jets theory	0.067	0.044	0.0018	
pile-up	0.040	0.021	0.0004	
Photon	0.035	0.031	0.0011	
$e \rightarrow \gamma$, jet $\rightarrow e, \gamma$ Bkg.	0.035	0.034	0.0028	
Lepton	0.027	0.003	0.0008	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.023	0.018	0.0003	
Signal theory shape	0.020	-	-	
Signal theory acceptance	0.12	-	_	
Data stats.	0.16	0.11	0.0056	
$W\gamma$ + jets/ $Z\gamma$ + jets Norm.	0.073	0.013	0.0004	
MC stats.	0.063	0.046	0.0026	
Total	0.25	0.15	0.0073	

DNN event classification

- A Dense Neutral Network (DNN) is used to discriminate between signal and background for the $H \rightarrow$ inv. search
- DNN architecture: 3 blocks, each composed of: 1.dense layer, 2. ReLU activation function, 3. Batch Normalization, and 4. Droupout rate.
 - Each block receives output of previous block concatenated with input features
 - Dropout and Batch Normalization layers are included to avoid over-training
 - Weights are updated by minimizing binary cross-entropy loss

Back Up

H-> $\gamma \gamma_d$

ATLAS-CONF-2020-052

H -> inv.

Analysis	\sqrt{s} [TeV]	Int. luminosity [fb ⁻¹]	Best fit $\mathcal{B}_{H \to \mathrm{inv}}$	Observed upper limit	Expected upper limit	Reference
Run 2 VBF	13	139	$0.00\substack{+0.07\\-0.07}$	0.13	$0.13\substack{+0.05 \\ -0.04}$	[42]
Run 2 <i>tī</i> H	13	139	$0.04\substack{+0.20\\-0.20}$	0.40	$0.36\substack{+0.15 \\ -0.10}$	This document
Run 2 Comb.	13	139	$0.00\substack{+0.06\\-0.07}$	0.13	$0.12\substack{+0.05 \\ -0.04}$	This document
Run 1 Comb.	7,8	4.7, 20.3	$-0.02^{+0.14}_{-0.13}$	0.25	$0.27\substack{+0.10 \\ -0.08}$	[36]
Run 1+2 Comb.	7, 8, 13	4.7, 20.3, 139	$0.00\substack{+0.06\\-0.06}$	0.11	$0.11\substack{+0.04 \\ -0.03}$	This document

The interpretation of ATLAS results assumes Higgs portal scenarios where the 125 GeV Higgs boson decays to a pair of DM particles that are either scalars or Majorana fermions.