Search for η_b signal in $J/\psi J/\psi$ final state with CMS Run II data

The 7th China LHC Physics Workshop Nov 25th, 2021

Xuyang Gao,

Fudan University

CLHCP2021@NNU

Outline

Motivation

- **D**ata samples
- Event selection
- **D** Background study
- **D** Cut optimization

D Summary

Motivation

• η_b , $0^+(0^{-+})$ is the lightest bottomonium state for $b\bar{b}$ system.

- Observations were reported by BABAR and Belle via inclusive searches.
 - $\Upsilon(3S) \to \gamma \eta_b$

[BABAR, Phys. Rev. Lett 101 (2008) 071801]

 $\blacksquare h_b(1P)|h_b(2P) \to \gamma \eta_b$

[Belle, Phys. Rev. Lett 109 (2012) 232002]

 $\ \ \, \blacksquare \ \, \Upsilon(2S) \rightarrow \gamma \eta_b$

[Belle, Phys. Rev. Lett. 121 (2018) 232001]

No η_b observed from exclusive search.

Motivation

Production of η_b at hardon collider should be on observable level, however no dominant decay mode.

- Similar process $\eta_c \rightarrow \phi \phi$ has unexpected large branching ratio $\sim 10^{-3}$, drive us to search for $\eta_b \rightarrow J/\psi J/\psi$ in CMS.
 - A good study and test of theories.
 - More precise measurement on η_b resonant parameters.

Phys. Rev. D 70 2004 054014

CDF presented the search in 2006 in $4-\mu$ final state using $1.1 f b^{-1}$ of data, 3 candidates while 3.6 background events are observed.

4

Data samples

Data

- Dataset: Charmonium
- Data: Full Run II data, 135 fb^{-1}
- Json: corresponding to muon json.

Monte Calo

- Signal process
- Single-parton-scattering process (SPS)
- Double-parton-scattering process (DPS)

Trigger:

Year	Trigger
2016	HLT_Dimuon0_Jpsi_Muon
2017 / 2018	HLT_Dimuon0_Jpsi3p5_Muon2

Event selection

Event selection:

- Net charge == 0
- *p*_{*T*} >2.0 GeV
- |η| < 2.4
- $Prob_{vertex}(4\mu) > 0.5\%$
- For each dimuon pair:
 - Valid mass constraint fit
 - $\blacksquare Prob_{vertex}(2\mu) > 0.1\%$
 - 2.95 < $|M J/\psi|$ < 3.25 GeV
- $p_T^{leading J/\psi} > 13.5 \text{ GeV}$
 - $p_T^{sub-leading J/\psi} > 8.0 \text{ GeV}$

Event category:

- **\square** μ_1^+ , μ_2^- is for the J/ψ has higher p_T
- μ_3^+ , μ_4^- is for the J/ψ has lower p_T

Signal region: $M_{J/\psi J/\psi} \in [9.2, 9.6]$

Sideband region: $M_{J/\psi J/\psi} \in [8.6, 9.2] \mid | [9.6, 10.2]$

Background study

To study the background fractions, we perform simultaneous fit on the data sideband events kinematics distributions with SPS and DPS shapes.

The obtained SPS and DPS fractions are applied to make the mixed background for further cut optimizations.

Cut optimization

To study the cut optimization, FOM method is used:

$$FOM = S/(\frac{3}{2} + \sqrt{B})$$

S comes from signal MC samples, while B comes from normalized MC samples mixed by fractions obtained via simultaneous fit.

• The $M_{4\mu}$ distributions from signal MC/ bkg MC before applying the optimized cuts

Cut optimization

9

The M_{4µ} distributions from signal MC/ bkg MC after applying the cuts

- An exclusive search for η_b signal in $J/\psi J/\psi$ final state with CMS Run II data
- All event selection strategies are set
- Continue to work for opening box

Back up

Analysis Note : AN-20-006

Background study

• The bkg shapes show good agreement in all kinematic distributions.

12

Background study

• The bkg shapes show good agreement in all kinematic distributions.

13

