Observation of VBS Vyj processes with the ATLAS detector Jing Chen

Shanghai Jiao Tong University

Introduction

- Vector boson scattering (VBS) measurements offers an important way to probe electroweak symmetry breaking.
- The presence of the Higgs boson prevents the VBS amplitudes from violating **unitarity** at the TeV scale.

Jing Chen Page . 2

- Sensitive to anomalous quartic coupling: probe aQGC, test SM, search for new physics
- Measure VBS via the corresponding EW productions.

VVjj productions

专政道研究近

Tsung-Dao Lee Institute

酒交通大學

ssWWjj, 8TeVPhys. Rev. Lett. 113, 141803

CLHCP

Jing Chen

Page. 3

- VVjj category:
 EW-VVjj (including VBS)
 - QCD-VVjj
- VBS topology:

- Two hard forward jets with large m_{jj} and large $\Delta\eta_{\,jj}$

- Sensitive variables: $\Delta \eta_{jj}$, m_{jj} — search for VBS

VBS measurements

不改道研究近

Tsung-Dao Lee Institute

海交通大學

Jing Chen

Page. 4

Same-sign WWjj

13TeV, 36.1*fb*⁻¹

在交通大學

- **Dilepton channel**
- Significance: $6.5\sigma(4.4\sigma_{W^{\pm}W^{\pm}jj}^{\text{Hxpected background}})$
- **Cross-sections:**
 - $\sigma^{fid} = 2.89^{+0.51}_{-0.48}(stat.)^{+0.24}_{-0.22}(exp.syst.)^{+0.14}_{-0.16}(mod syst.)^{+0.08}_{-0.06}(lumi)fb$ Measured:

 e^-e^-

 1.09 ± 0.27

 1.2 ± 0.6

 1.6 ± 0.4

 0.14 ± 0.04

 0.15 ± 0.05

 4.1 ± 1.1

 2.2 ± 0.4

4

 $e^+\mu^+$

 11.6 ± 1.9

 $5.9~\pm~2.5$

 6.3 ± 1.6

 0.90 ± 0.20

 2.9 ± 1.0

28

24

 ± 4

 ± 5

44

 e^+e^+

 1.48 ± 0.32

 $2.2~\pm~1.1$

 1.6 ± 0.4

 0.16 ± 0.04

 0.35 ± 0.13

 5.8 ± 1.4

 $5.6~\pm~1.0$

10

Predicted: $2.01^{+0.33}_{-0.23}fb$ (Sherpa)

Phys. Rev. Lett. 123 (2019) 161801

 $\mu^+\mu^+$

 5.0 ± 0.7

 0.56 ± 0.05

 0.39 ± 0.09

 1.8 ± 0.6

 7.7 ± 0.9

 $13.4 ~\pm~ 2.5$

25

 $e^{-}\mu^{-}$

 7.9 ± 1.4

 $4.7 ~\pm~ 1.6$

 4.3 ± 1.1

 0.63 ± 0.14

 1.2 ± 0.4

 $18.8 ~\pm~ 2.6$

 $9.4 \hspace{0.2cm} \pm \hspace{0.2cm} 1.8$

28

波道研究听

-Dao Lee Institute

WZ

Data

Non-prompt

 e/γ conversions

 $W^{\pm}W^{\pm}ii$ strong

Other prompt

Jing Chen Page. 5

Combined

 13.9 ± 2.9

 $2.4~\pm~0.5$

 7.2 ± 2.3

 ± 7

 ± 11

122

 ± 4

 ± 5

30

15

69

60

ÍS

 $\mu^{-}\mu^{-}$

 $3.4~\pm~0.6$

 0.68 ± 0.13

 0.22 ± 0.05

 0.76 ± 0.25

 5.1 ± 0.6

 $5.1~\pm~1.0$

11

胶道研究近

ネ

WZjj

Phys. Lett. B 793 (2019) 469 โรเ Π

- 13TeV, 36.1*fb*⁻¹ •
- WZ decay leptonically ٠

	\mathbf{SR}	WZjj–QCD CR	$b ext{-}\mathrm{CR}$	ZZ-CR
Data	161	213	141	52
Total predicted	200 ± 41	290 ± 61	160 ± 14	$45.2~\pm~7.5$
WZjj-EW (signal)	24.9 ± 1.4	8.45 ± 0.37	1.36 ± 0.10	0.21 ± 0.12
WZjj–QCD	144 ± 41	231 ± 60	24.4 ± 1.7	1.43 ± 0.22
Misid. leptons	9.8 ± 3.9	17.7 ± 7.1	30 ± 12	0.47 ± 0.21
ZZjj-QCD	8.1 ± 2.2	15.0 ± 3.9	1.96 ± 0.49	35 ± 11
tZj	6.5 ± 1.2	6.6 ± 1.1	36.2 ± 5.7	0.18 ± 0.04
$t\bar{t} + V$	4.21 ± 0.76	9.11 ± 1.40	65.4 ± 10.3	$2.8~\pm~0.61$
ZZjj-EW	1.80 ± 0.45	0.53 ± 0.14	0.12 ± 0.09	4.1 ± 1.4
VVV	0.59 ± 0.15	0.93 ± 0.23	0.13 ± 0.03	1.05 ± 0.30

- Significance: $5.3\sigma(3.2\sigma)$ •
- **Cross-section** ۲

$$\sigma^{fid} = 0.57^{+0.14}_{-0.13}(stat.)^{+0.05}_{-0.04}(exp.syst.)^{+0.05}_{-0.04}$$
$$(mod \ syst.)^{+0.01}_{-0.01}(lumi)fb$$

ZZjj

- Full Run2 datasets (139 fb^{-1})
- Measure the inclusive ZZjj crosssection (EW + QCD)
- Evidence on EW-ZZjj production
 - Combine *lllljj* and *llvvjj*, fit the multivariate analysis (MVA) output to extract the significance of EW component and signal strength (μ_{EW}).

-Dao Lee Institute

• Two channels: *lllljj*, *llvvjj*

- Backgrounds:
 - *lllljj*: QCD background, fake lepton background, WWZ...

Jing Chen Page . 7

arXiv:2004.10612

llvvjj: Non-Resonant background, WZ background, Z+jets background, ZZ → *llll*,VVV, ttV, ttVV

ZZjj

• Event yields:

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
EW ZZjj	20.6 ± 2.5	12.3 ± 0.7
$\operatorname{QCD} ZZjj$	77 ± 25	17.2 ± 3.5
$\operatorname{QCD} ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	—	21.4 ± 4.8
WZ	_	22.8 ± 1.1
Others	$3.2\pm~2.1$	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

$$C = \frac{N_{detector-level}}{N_{FV-truth}} \ \sigma = \frac{N_{data} - N_{background}}{\mathcal{L} \times C}$$

Cross-sections:

 The definition of fiducial regions are very similar with detector-level selections by using particle-level physics objects.

Jing Chen Page . 8

arXiv:2004.10612

 Fiducial cross-sections for the inclusive production of the EW and QCD processes are measured separately in individual channels.

<i>lllljj</i> C factor	0.699 ± 0.031
<i>llvvjj</i> C factor	0.216 <u>+</u> 0.012

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
lllljj	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo})$
llvvjj	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Jing Chen Page . 9

- To extract EW process, a profile likelihood fit is performed on Gradient Boosted Decision Tree (BDTG) response.
- Observed and expected distributions:
 - Multivariate discriminants (MDs) are used to further separate the EW signal from the backgrounds.
 - Data distributions are consistent with predict ones.

-Dao Lee Institute

• VBS ssWWjj, WZjj, ZZjj processes had been observed. More precise measurements will come with full Run2 datasets.

Jing Chen <u>Page .</u> 10

- The observation of EW-ZZjj production is a new milestone reached in the study of EW-VVjj production.
- Based on the precision measurement, we can move to the longitudinal polarization measurement, aQGC searches ...
- VBS $Z\gamma jj$ measurements can be found in <u>Despoina Sampsonidou's talk</u>.

Backup

EW-VVjj production at 13TeV

上海交通大學 | 李旼道研究町

Tsung-Dao Lee Institute

VVjj	final states	$\sigma(VVjj\text{-}\mathrm{EW}) / \mathrm{fb}$	$\sigma(VVjj\text{-}\text{QCD})/\text{fb}$	
$W^{\pm}W^{\pm}$	lvlvjj	4.28 ± 0.01	1.69 ± 0.02	Philipp Anger's thesis
W^+W^-	<i>ℓνℓν</i> jj	15.57 ± 0.08	35.24 ± 0.13	Production cross-
ZZ	<i>llνν</i> jj	0.39 ± 0.01	0.55 ± 0.01	section for EW and QCD VVjj production:
ZV	lljjjj	0.98 ± 0.07	3.13 ± 0.22	-All results are
$Z\gamma$	$\ell\ell\gamma jj$	9.24 ± 0.02	71.28 ± 0.33	
WZ	lvlljj	2.36 ± 0.01	7.19 ± 0.01	-Pre-VBS cuts
ZZ	lllljj	0.12 ± 0.01	0.21 ± 0.01	applied

CLHCP

Nel n Ism

Jing Chen Page . 12

ssWWjj

Source	Impact [%]
Experimental	
Electrons	0.6
Muons	1.3
Jets and $E_{\rm T}^{\rm miss}$	3.2
b-tagging	2.1
Pileup	1.6
Background, statistical	3.2
Background, misid. leptons	3.3
Background, charge misrec.	0.3
Background, other	1.8
Theory modeling	
$W^{\pm}W^{\pm}jj$ electroweak-strong interference	1.0
$W^{\pm}W^{\pm}jj$ electroweak, EW corrections	1.4
$W^{\pm}W^{\pm}jj$ electroweak, shower, scale, PDF & α_s	2.8
$W^{\pm}W^{\pm}jj$ strong	2.9
WZ	3.3

2.4

CLHCP

Jing Chen Page . 13

Luminosity

WZjj

上海交通大學 | 卡达道研究町 SHANGHAI JIAO TONG UNIVERSITY TSUNG-DAO Lee Institute

Source	Uncertainty [%]
WZjj-EW theory modelling	4.8
WZjj-QCD theory modelling	5.2
WZjj-EW and $WZjj$ -QCD interference	1.9
Jets	6.6
Pile-up	2.2
Electrons	1.4
Muons	0.4
b-tagging	0.1
MC statistics	1.9
Misid. lepton background	0.9
Other backgrounds	0.8
Luminosity	2.1
Total Systematics	10.7

ี โรงกับ

× []

Jing Chen Page . 14

• Theoretical uncertainties:

- PDF, QCD scale, α_s , parton showering (PS).

- Interference effect between the EW and QCD processes is 6.8%(2.3%) in *lllljj(llvvjj*) channel. Treat as an extra uncertainty in the EW signal predictions.

- **Generator modelling uncertainty:** estimated by comparing Sherpa with MadGraph5 _aMC@NLO 2.6.1 predictions at particle level.

Jing Chen Page . 15

Experimental uncertainties:

- luminosity: 1.7%.

- The momentum scale and resolution of leptons and jets, lepton reconstruction and selection efficiencies, trigger selection efficiency, the calculation of the E_T^{miss} soft-term, the pile-up correction, and the b-jet identification efficiency: 5-10%.

- Jet pile-up uncertainty.