Standard Model and Effective Field Theory measurements

Zhengyun You (尤郑昀) Sun Yat-sen University The 7th China LHC Physics Workshop 2021/11/25

Outline

- Standard Model (SM) Electro-Weak measurements
 - Single boson $boson = W, Z, \gamma$
 - Di-boson (VBS)
 - Tri-boson
- Effective Field Theory (EFT) measurements
 - Electroweak
 - Higgs
 - Top related

Introduction

- Electroweak theory has been proven to be successful
- Huge W/Z boson production at LHC to test SM self-consistency
- Test theoretical models with higher order QCD
- Search for New Physics with EFT formalism

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_\mu} (1 + \Delta r)$$

Cross Section measurements

W production: rapidity, helicity & PDF

PRD 102 (2020) 092012

- W rapidity, lepton pseudo-rapidity, for PDF constraints
- 2D binning (p_T, η) distribution sensitive to helicity fractions

Z production: p_T distribution

- $Z \rightarrow ll, Z \rightarrow vv$, multi-differential p_T distribution
- Excellent performance of theoretical tools, NLO EW corrections ۲

36.3 fb⁻¹ (13 TeV

China CMS (PKU) team plays a leading role

36.3 fb⁻¹ (13 TeV)

CMS Preliminary

CMS Preliminary

1400

Invisible Z width

• $\Gamma(Z \to \nu \bar{\nu}) = \frac{\sigma(Z + \text{jets})\mathcal{B}(Z \to \nu \bar{\nu})}{\sigma(Z + \text{jets})\mathcal{B}(Z \to \ell \ell)} \Gamma(Z \to \ell \ell)$

<u>CMS-PAS-SMP-18-014</u>

- Using 36.3 fb^{-1} of 13 TeV data
- First direct measurement of invisible Z width at a hadron collider

Z + high p_T jets

8

• Full 13 TeV data (139 fb^{-1}), ee and $\mu\mu$ channels combined

- Jet $p_T > 500$ GeV (High- p_T = collinear + back-to-back)
- Some overestimates of large $p_T \sigma$ from MG5@LO and Sherpa v.2.2.1

Z + jets

CMS-PAS-SMP-19-009

CMS-PAS-SMP-21-003

—— MG5_aMC + PY8 (≤ 2j NLO + PS)

4 Data

35.9 fb⁻¹ (13 TeV)

10⁵

- Using 35.9 fb^{-1} of 13 TeV data (2016), ee and $\mu\mu$ channels combined ۲
- Provides a sensitive evaluation of the accuracy of QCD modeling •

China CMS (PKU) team makes important contributions

≥ 7

Z + b jets

CMS-PAS-SMP-20-015

- Full 13 TeV data (139 fb^{-1}), ee and $\mu\mu$ channels combined
- Differential cross section as function of $p_{\scriptscriptstyle T}$ and $|\eta|$ of leading b jet
- MG5@NLO Sherpa have good shape predictions but overestimate total σ_{i}

Photon pairs

• Full 13 TeV data (139 fb^{-1}), direct and fragmentation prompt γ

arXiv:2107.09330

- Main challenge and uncertainty from non-prompt γ
- Differential distributions in good agreement with Sherpa MEPS and FO NNLO

 $\sigma_{\gamma\gamma} = 31.4 \pm 0.1(stat.) \pm 0.1(syst.) \, pb$

Di-boson

- The Vector Boson Scattering and Vector Boson Fusion
- Allow precision measurements of EW
- Rare process $\sim \alpha_{EW}^6 @LO$
- Important component of VVjj production via EW
- Vector boson self-coupling and coupling to Higgs boson
- Very sensitive to New Physics effects
- Sensitive to aTGCs/aQGCs

VBS

Longitudinal polarized $W^{\pm}W^{\pm}VBS$

- First measurement of production cross sections for polarized $W^{\pm}W^{\pm}$ PLB 812 (2020) 136018 China CMS (PKU) team makes important contributions
- Golden channel for VBS, EW production dominant over QCD

Semi-leptonic WV VBS

CMS-PAS-SMP-20-013

- Full 13 TeV data (137 fb^{-1}), e and μ channels combined
- Good agreements between data and MC prediction
- First evidence for EW WV plus two jets in the semi-leptonic channel

China CMS (IHEP) team makes important contributions

EW ZZ + 2 jets

CMS

16

• ATLAS: combined fit in 4l jj and 2l2lv jj 5.5 σ (4.3 σ)

<u>arXiv:2004.10612</u> <u>PLB 812 (2021) 135992</u>

China ATLAS (USTC, TDLI/SJTU) team plays a leading role

• CMS: full 13 TeV data (137 fb^{-1}), evidence of *EW ZZjj* production at 4σ

China CMS (PKU) team plays an important role

EW $Z\gamma + jj$

- Observation of EW $Z(ll)\gamma jj$, e and μ channels combined
- EW $Z(ll)\gamma jj$ signal observed with 10σ
- EW $Z(\nu\nu)\gamma jj$ signal with 5.2 σ (5.1 σ)

EW di-boson production cross-section

- The first measurements of di-boson cross sections in pp @ 5 TeV
 PRL 127 (2021) 191801
- All measurements are in good agreements with NNLO-QCD and NL EW

 $\sigma_{WW} = 37.0^{+5.5}_{-5.2} (stat.) {}^{+2.7}_{-2.6} (syst.) \, pb \qquad \sigma_{WZ} = 6.4^{+2.5}_{-2.1} (stat.) {}^{+0.5}_{-0.3} (syst.) \, pb$

 $\sigma_{ZZ} = 5.3^{+2.5}_{-2.1} (stat.) {}^{+0.5}_{-0.4} (syst.) pb$

Tri-boson

PRL 125 (2020) 151802

- Tri-boson measurements are statistical limited
- First observation of *VVV* production, *VVV* = *WWW*, *WWZ*, *WZZ*, *ZZZ*, including VH

ATLAS-CONF-2021-039

- Full 13 TeV data (139 fb^{-1}), e and μ channels combined
- *WWW* production observed with 8.2σ (5.4 σ)

Vγγ

JHEP 10 (2021) 174

- First measurement of $V\gamma\gamma$ at 13 TeV
- First evidence of $W_{\gamma\gamma}$ and first observation of $Z_{\gamma\gamma}$ at 13 TeV
- Wyy significance 3.1σ (4.5 σ), Zyy significance 4.8σ (5.8 σ)

EFT introduction

- No direct evidence of new physics from resonance searches
- Indirect search for NP with precision measurements
- Standard Model Effective Field Theory
 - Parametrize deviations with higher dimensional operators

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)}$$

- Measurements from ATLAS and CMS analyses
 - Dedicated measurements
 - EFT re-parametrization
 - EW, Higgs, Top and combinations

EW-EFT: $pp \rightarrow 4l$

- $pp \rightarrow 4l$, quadratic terms significant for four-fermion operators
- 22 coefficients giving non-negligible contributions considered separately
- Linear and linear + quadratic fits performed

China ATLAS (USTC) team makes important contributions

 $\begin{array}{c}
z^{(*)}/\gamma^{*} \\
\ell^{-} \\
\ell^{-} \\
\ell^{+} \\
q \\
\overline{q} \\
\overline{q}$

JHEP 07 (2021) 005

EW-EFT: $ZZ \rightarrow 4l$

EPJC 81 (2021) 200

- Full Run2 data, measurement of SM ZZ cross-section •
- Best limits on neutral aTGC ZZ and ZZZ couplings ٠

China CMS (IHEP) team makes important contributions

z		$z = \overline{q}$	
Standard Model Production		SM Forbidder	
	Expected 95% CL	Observed 95% CL	
aTGC parameter	$\times 10^{-4}$	$\times 10^{-4}$	
f_A^Z	-8.8;8.3	-6.6; 6.0	
f_5^Z	-8.0; 9.9	-5.5;7.5	
f_4^{γ}	-9.9; 9.5	-7.8;7.1	
f_5^{γ}	-9.2; 9.8	-6.8;7.5	
2.1		m r r -4	
EFT parameter	TeV^{-4}	TeV ⁻⁴	
EFT parameter $C_{\mathbf{R}_{\mathbf{W}}}/\Lambda^4$	TeV^{-4} -3.1 ; 3.3	-2.3; 2.5	
EFT parameter $C_{\beta W}/\Lambda^4$ C_{WW}/Λ^4	TeV ⁻⁴ -3.1 ; 3.3 -1.7 ; 1.6	-2.3; 2.5 -1.4; 1.2	
EFT parameter $C_{\widehat{B}W}/\Lambda^4$ C_{WW}/Λ^4 C_{BW}/Λ^4	TeV ⁻⁴ -3.1 ; 3.3 -1.7 ; 1.6 -1.8 ; 1.9	-2.3 ; 2.5 -1.4 ; 1.2 -1.4 ; 1.3	

EW-EFT: $W\gamma$

 ν_{ℓ}

- Interference term suppressed, O_{3W} affects triple gauge boson vertex
- Quadratic terms dominant, higher dimension may be important
- Sensitivity to linear term improved by $\times 10$

China CMS (PKU) team plays a leading role

PRL 126, 252002 (2021) CMS-PAS-SMP-20-005

 W^+

ā

EW-EFT: WZ

- $pp \rightarrow WZ$, cross section measured in tri-lepton final states
- Sensitivity to 3 CP-conserving and 2 CP-violating terms
- Quadratic term has dominant impact on several coefficients
- Validity of EFT expansion investigated by varying m(WZ) cut-off

EW-EFT: $WW + \ge 1j$

E LELEDER

JHEP 06 (2021) 003

- $WW + \ge 1 jet$, sensitive to c_w via gauge boson self-coupling
- First jet-inclusive differential WW measurements at LHC
- Quadratic term still dominant, but impact reduced at higher jet pT

EW-EFT: *Ζγjj*

PRD 104 (2021) 072001

- *Z*γ*jj*, aQGC limits on dimension 8 operators
- Similar sensitivity on T8 and T9 between VBS $Z\gamma$ and VBS ZZ, limit for T9 most stringent

China CMS (PKU) team plays a leading role

China CMS (SYSU) team makes important contributions

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$F_{\rm M0}/\Lambda^4$	-12.5	12.8	-15.8	16.0	1.3
$F_{\rm M1}/\Lambda^4$	-28.1	27.0	-35.0	34.7	1.5
$F_{\rm M2}/\Lambda^4$	-5.21	5.12	-6.55	6.49	1.5
$F_{\rm M3}/\Lambda^4$	-10.2	10.3	-13.0	13.0	1.8
$F_{\rm M4}/\Lambda^4$	-10.2	10.2	-13.0	12.7	1.7
$F_{\rm M5}/\Lambda^4$	-17.6	16.8	-22.2	21.3	1.7
$F_{\rm M7}/\Lambda^4$	-44.7	45.0	-56.6	55.9	1.6
$F_{\rm T0}/\Lambda^4$	-0.52	0.44	-0.64	0.57	1.9
$F_{\mathrm{T1}}/\Lambda^4$	-0.65	0.63	-0.81	0.90	2.0
$F_{\mathrm{T2}}/\Lambda^4$	-1.36	1.21	-1.68	1.54	1.9
$F_{\mathrm{T5}}/\Lambda^4$	-0.45	0.52	-0.58	0.64	2.2
$F_{\rm T6}/\Lambda^4$	-1.02	1.07	-1.30	1.33	2.0
$F_{\mathrm{T7}}/\Lambda^4$	-1.67	1.97	-2.15	2.43	2.2
$F_{\mathrm{T8}}/\Lambda^4$	-0.36	0.36	-0.47	0.47	1.8
$F_{\mathrm{T9}}/\Lambda^4$	-0.72	0.72	-0.91	0.91	1.9

CLHCP 2021

Combined EFT fit

<u>ATLAS-PHYS-PUB-2021-022</u>

- Combined fit of WW, WZ, 4l, VBF Z, 6 differential inputs
- Considering both linear-only and also quadratic effects
- Constrained individually or in combination (profiled)

China ATLAS (USTC & TDLI/SJTU) teams make important contributions

Higgs-EFT

- $H \rightarrow 4l, tH + ttH + ggH$
- Study structure of *HVV*, *ggH*, *ttH* in SMEFT framework ۲
- Results consistent with SM Higgs ٠

China CMS (Zhejiang Univ.) team plays a leading role

PRD 104, 052004 (2021)

Higgs-EFT: WW, H(WW*)

----- 68 % CL ----- 95 % CL

Best Fit

0.04

- Combination of a measurement $H \rightarrow WW^*$ in WW, 36.1 fb^{-1}
- Consider 20 CP-even Wilson coefficients
- Agreement with SM at the level of 1σ

ATL-PHYS-PUB-2021-010

ATLAS Preliminary

 $\sqrt{s} = 13$ TeV. 36.1 fb⁻¹

SMEFT $\Lambda = 1$ TeV

EFT: Higgs combination

- $H \rightarrow \gamma \gamma, H \rightarrow ZZ \rightarrow 4l, H \rightarrow b\overline{b}$, combined measurements
- Separate measurements using STXS framework
- The observations are consistent with SM

<u>JHEP 07 (2021) 027</u> <u>EPJC 81 (2021) 488</u> <u>ATLAS-CONF-2020-053</u>

32

Top-EFT

- t(t) + lepton, combined measurements
- Five signal processes *ttH*, *ttll*, *ttlv*, *tllq*, *tHq*
- 16 operators considered
- Consistent with SM at 2σ

Summary & Outlook

- EW measurements
 - LHC has entered the era of precise measurements
 - In di-boson production (VBS), theoretical systematic at the same level of statistical
 - Statistical limited in tri-boson measurements
- EFT measurements
 - Two approaches, reparameterization or direct measurements
 - Both ATLAS and CMS have provided excellent results in EWK, Higgs, Top sectors
- The coming run3 data will increase the BSM sensitivity