ATLAS-CONF-2021-014

Measurement of the ggF, H→WW* with full Run2 data at ATLAS

Dongshuo Du

University of Science and Technology of China

CLHCP2021, 2021/11/25

Outline

- Overview and introduction
- Signal region (SR) definition
- Background estimation
- Systematic uncertainties
- Simplified Template Cross Sections and fit results
- Summary

Overview and Introduction

The results with 36.1 fb⁻¹ dataset

Precision:

$$\begin{split} \mu_{ggF} &= 1.10^{+0.10}_{-0.09}(\text{stat.})^{+0.13}_{-0.11}(\text{theo syst.})^{+0.14}_{-0.13}(\text{exp syst.}) \\ &= 1.10^{+0.21}_{-0.20} \\ \mu_{VBF} &= 0.62^{+0.29}_{-0.27}(\text{stat.})^{+0.12}_{-0.13}(\text{theo syst.}) \pm 0.15(\text{exp syst.}) \\ &= 0.62^{+0.36}_{-0.35}. \end{split}$$

 $\sigma_{ggF} \cdot \mathcal{B}_{H \to WW^*}$ = 11.4^{+1.2}_{-1.1}(stat.)^{+1.2}_{-1.1}(theo syst.)^{+1.4}_{-1.3}(exp syst.) pb = 11.4^{+2.2}_{-2.1} pb

 $\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*}$ = 0.50^{+0.24}_{-0.22}(stat.) ± 0.10(theo syst.)^{+0.12}_{-0.13}(exp syst.) pb = 0.50^{+0.29}_{-0.28} pb.

Physics Letters B, Volume 789

	Syst. uncert. dominant	Stat. uncert. dominant
Source	$\Delta \sigma_{ggF} \cdot \mathcal{B}_{H \to WW^*}$ [%]	$\Delta \sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*}$ [%]
Data statistics CR statistics	10 7	46 9
MC statistics Theoretical uncertainties ggF signal VBF signal WW Top-quark Experimental uncertainties <i>b</i> -tagging Modelling of pile-up Jet Lepton	6 10 5 <1 6 5 8 4 5 2 3 6	21 19 13 4 12 5 9 6 2 2 2 <1
Misidentified leptons Luminosity TOTAL	6 3 18	9 3 57

Overview and Introduction

.

.

Channel

 $N_{\text{iet}} = 0$

 $N_{\text{iet}} = 1$

Signal selection and background estimation

Signal Selection

Backgrounds Estimation

Channel	qqWW	Тор	Z/γ^*		VV other than qqWW		W + jets
$N_{\rm jet} = 0$	CR	CR	CR		MC+VR		Data
$N_{\rm jet} = 1$	CR	CR	CR		MC+VR		Data
				F		_	

The m_T Distribution in the CRs

7

W+jets: Fake factor method

 Due to poor MC modeling, W+jets background estimated in a data driven way using fake factor method.

Three ingredients: W+jets control sample, fake factor and flavour correction.

$$N_{\rm id+id}^{W+\,\rm jets} = N_{\rm id+anti-id}^{W+\,\rm jets} \times FF \times CF = (N_{\rm id+anti-id} - N_{\rm id+anti-id}^{EW}) \times FF \times CF$$

where the fake factor and the flavour correction factors defined as

$$FF(\mathbf{p}_T, \eta) = \frac{N_{id}(\mathbf{p}_T, \eta)}{N_{anti-id}(\mathbf{p}_T, \eta)} CF = \left[\frac{FF(W + jets)}{FF(Z + jets)}\right]_{MC}$$

- Fake factor derived in Z+jets control sample with dedicated "3-lepton" selection in which 2 leptons are "Z-tagged" and an additional "fake candidate" lepton.
- CF corrects for the different flavour compositions in W+jet (CR) and Z+jets (FF).

Electron		Muon		
identified	anti-identified	identified	anti-identified	
$p_{\rm T} > 1$	5 GeV	$p_{\rm T} > 15 {\rm GeV}$		
$ \eta < 2.47$, excludin	$g 1.37 < \eta < 1.52$	$ \eta < 2.5$		
$ z_0 \sin \theta < 0.5 \text{ mm}$		$ z_0 \sin \theta < 0.5 \text{ mm}$		
$ d_0 /\sigma($	$d_0) < 5$	$ d_0 /\sigma(d_0) < 3$	$ d_0 /\sigma(d_0) < 15$	
Pass LHTight if				
$p_{\rm T} < 25 { m ~GeV}$	Dass I HI oosa	Pass Quality Tight	Pass Quality Madium	
Pass LHMedium if	rass Liiloose	rass Quanty right	r ass Quanty Medium	
$p_{\rm T} > 25 \text{ GeV}$				
Pass FCTight isolation		Pass FCTight isolation		
Author = 1				
	Veto against identified		Veto against identified	
	electron		muon	

Statistical analysis

Fit Setup

• Perform binned profile likelihood fit to extract signal strength μ_{ggF} :

$$\mathcal{L}(\mu, \boldsymbol{\theta}) = \prod_{i \in \text{bins}} \text{Pois}(N|\mu s_i(\boldsymbol{\theta}) + \gamma_i b_i(\boldsymbol{\theta})) \prod_{i \in \text{bins}} \text{Pois}(m_i|\gamma_i \tau_i) \prod_{\boldsymbol{\theta} \in \boldsymbol{\theta}} \text{Gaus}\left(\tilde{\boldsymbol{\theta}} \middle| \boldsymbol{\theta}\right)$$

SR bins + CRs likelihood Constraint on MC stat. unc.

- m_T used as discriminant variable in the final fit.
 - ➤ [80-130] GeV considered, outside as over/under-flow.
- 8 signal regions:

N_j	$m_{\ell\ell}$	$p_{\mathrm{T}}^{\mathrm{sublead}}$
$N_{\rm jet} = 0$	[10-30, 30-55]	[15-20, 20-∞]
$N_{\rm jet} = 1$	[10-30, 30-55]	[15-20, 20-∞]

- Optimize the sensitivity by re-mapping the m_T distribution
 - [<90, 90–100, 100–110, 110–120, 120–130, >130] GeV for both 0 and 1jet

Systematics uncertainties

- Theory uncertainties:
 - > ggF signal: ggF jet bin migration, α s, shower
 - VBF: scale, shower, pdf, matching
 - WW: αs, pdf, scale, QSF,CSSKIN , ckkw (truth level),ggWW scale
 - Top: Interference (Wt only), matching, shower, scale, ISR, FSR, pdf
 - ZTT: generator, pdf, scale, αs
- Experimental uncertainties follow the ATLAS recommendation:
 - > Trigger
 - Pileup reweighting
 - > MET
 - Electron and muon related

- > Jet
- Flavour tagging
- Luminosity

➤The dominant experimental uncertainties originate from b-jet identification, the pile-up modelling, the jet energy resolution, and the Mis-Id background estimate.

Combined fit results (ggF+VBF)

ATLAS-CONF-2021-014

Perform ggF + VBF combined fit.

• Sensitivity:

 $\mu_{ggF} = 1.20 \stackrel{+0.16}{_{-0.15}} \longrightarrow \text{To date, It's the most precise result} \\ = 1.20 \pm 0.05 \text{ (stat.)} \stackrel{+0.09}{_{-0.08}} \text{ (exp syst.)} \stackrel{+0.10}{_{-0.08}} \text{ (sig theo.)} \stackrel{+0.12}{_{-0.11}} \text{ (bkg theo.)} \\ \mu_{VBF} = 0.99 \stackrel{+0.24}{_{-0.20}}$

= $0.99 \stackrel{+0.13}{_{-0.12}}$ (stat.) $\stackrel{+0.07}{_{-0.06}}$ (exp syst.) $\stackrel{+0.17}{_{-0.12}}$ (sig theo.) $\stackrel{+0.10}{_{-0.08}}$ (bkg theo.).

• Significance is 6.6 for VBF

Source	$\frac{\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}} \left[\%\right]$	$\frac{\Delta \sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}} \ \big[\%\big]$
Data statistical uncertainties	5	13
Total systematic uncertainties	11	18
MC statistical uncertainties	4	3.2
Experimental uncertainties	6	7
Flavour Tagging	2.4	0.9
Jet energy scale	1.4	3.3
Jet energy resolution	2.3	1.9
$E_{ m T}^{ m miss}$	1.9	5
Muons	2.1	0.7
Electrons	1.5	0.3
Fake factors	2.4	1.0
Pile-up	2.4	1.3
Luminosity	2.0	2.1
Theoretical uncertainties	8	16
ggF	5	4
VBF	0.7	13
Тор	4	5
Ζττ	2.0	2.1
WW	4	5
Other VV	3	1.2
Background normalisations	5	5
WW	3.1	0.5
Тор	2.4	2.2
Ζττ	3.1	4
TOTAL	12	22

Simplified Template Cross Sections

- This analysis based on the reduced stage 1.2 category to ensure sensitivity for all measurements.
- CRs split similar to SRs where statistics allow

STXS Results

ATLAS-CONF-2021-014

- > Extracted by profile likelihood fit: 17 SRs (m_T /DNN) + 27 CRs
- ggH uncertainties limited by both stat. + syst. uncertainty
- qqH uncertainties limited by statistical uncertainty at high m_{ii} / p_T^H
- Compatible with the SM predictions with a p-value of 52%

Summary

- Presented the full Run2 $H \rightarrow WW^*$ analysis.
- ggF+VBF combined fit results:

 $\mu_{ggF} = 1.20 \stackrel{+0.16}{_{-0.15}} \qquad \text{To date, It's the most precise result} \\ = 1.20 \pm 0.05 \text{ (stat.)} \stackrel{+0.09}{_{-0.08}} \text{ (exp syst.)} \stackrel{+0.10}{_{-0.08}} \text{ (sig theo.)} \stackrel{+0.12}{_{-0.11}} \text{ (bkg theo.)} \\ \mu_{VBF} = 0.99 \stackrel{+0.24}{_{-0.20}} \\ = 0.99 \stackrel{+0.13}{_{-0.12}} \text{ (stat.)} \stackrel{+0.07}{_{-0.06}} \text{ (exp syst.)} \stackrel{+0.17}{_{-0.12}} \text{ (sig theo.)} \stackrel{+0.10}{_{-0.08}} \text{ (bkg theo.)}.$

The STXS fit results are compatible with the SM predictions with a p-value of 52%

Back-up

Event preselection

- Preselection:
 - Exactly two opposite-charge, different-flavour (e,µ) leptons.
 - $p_T^{Lead} > 22GeV, p_T^{Sublead} > 15GeV$
 - $m_{ll} > 10 GeV$
 - $p_T^{miss} > 20 GeV$
- The definition of Signal regions and control regions are based on the preselection

Triggers used in this analysis:

An OR combination of unprescaled single lepton and dilepton triggers.

Lepton	Level-1 Trigger	High Level Trigger		
2015				
e	L1_EM20VH	HLT_e24_lhmedium_L1EM20VH		
	L1_EM22VHI	HLT_e60_lhmedium		
	L1_EM22VHI	HLT_e120_lhloose		
	L1_MU15	HLT_mu20_iloose_L1MU15		
μ	L1_MU20	HLT_mu50		
eμ	L1_EM15VH_MU10 HLT_e17_lhloose_mu1			
2016–2018				
	L1_EM22VHI	HLT_e26_lhtight_nod0_ivarloose		
е	L1_EM22VHI	HLT_e60_lhmedium_nod0		
	L1_EM22VHI	HLT_e140_lhloose_nod0		
μ	L1_MU20, L1_MU21	HLT_mu26_ivarmedium		
	L1_MU20, L1_MU21	HLT_mu50		
eμ	L1_EM15VH_MU10	HLT_e17_lhloose_nod0_mu14		

Using the direction and magnitude of the measured missing transverse momentum and projecting it along the directions defined by the two reconstructed charged leptons, the mass of the *tau*-lepton pair, m_{tautau} , can be reconstructed using the so-called collinear approximation

MC samples

	L			
Process	Matrix element	PDF set	UEPS model	Prediction order
	(alternative)		(alternative model)	for total cross section
ggF H	Powheg-Box v2 [33–37]	DE4LHC15 NNLO [02]	DVTULA 9 [29]	$N^{3}LOOCD + NLOEW [11, 43, 52]$
	NNLOPS [36, 40, 53]	PDF4LHC15 NNLO [92]		N = LO QCD + NLO E W [11, 43-32]
	(MG5_AMC@NLO) [59, 89]		(Herwig 7) [58]	
VBF H	Powheg-Box v2 [33–35, 53]	PDF4LHC15 NLO	Ρυτηία 8	NNLO QCD + NLO EW [55, 93, 94]
	(MG5_AMC@NLO)		(Herwig 7)	
VH excl. $gg \rightarrow ZH$	Powheg-Box v2	PDF4LHC15 NLO	Ρυτηία 8	NNLO QCD + NLO EW [62–66]
$gg \rightarrow ZH$	Powheg-Box v2	PDF4LHC15 NLO	Ρυτηία 8	NNLL [95, 96]
$qq \rightarrow WW$	Sherpa 2.2.2 [75]	NNPDF3.0NNLO [97]	Sherpa 2.2.2 [76-81]	NLO [82, 83, 98]
$qq \rightarrow WWqq$	Sherpa 2.1.1 [99]	CT10 [100]	Sherpa 2.2.1	LO
$gg \rightarrow WW$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	NLO [101]
$WZ/V\gamma^*/ZZ ightarrow \ell\ell\ell\ell/\ell\ell\ell u$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	NLO [99]
Other $WZ/V\gamma^*/ZZ$	Powheg-Box v2	CT10	Ρυτηία 8	NLO [99]
$V\gamma$	Sherpa 2.2.8 [75]	NNPDF3.0NNLO	Sherpa 2.2.8	NLO [99]
tī	Powheg-Box v2	NNPDF3.0NLO	Ρυτηία 8	NNLO+NNLL [102-108]
	(MG5_AMC@NLO)		(Herwig 7)	
Wt	Powheg-Box v2	NNPDF3.0NLO	Ρυτηία 8	NNLO [109, 110]
	(MG5_AMC@NLO)		(Herwig 7)	
Z/γ^*	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	NNLO [84]
	(MG5_AMC@NLO)			

The m_T distribution in 0/1 jet SRs after remapping

Correlation plot

The signal composition

Expected Composition

The variables distribution before applying corresponding cuts

The variables distribution before applying corresponding cuts

