BSM and Rare Higgs from ATLAS and CMS

<u>李冰 (Bing Li)</u>

山东大学 (Shandong University) CLHCP 2021, Nanjing, China Nov. 25 to 28, 2021

Introduction

- * The Higgs boson was discovered by the ATLAS and CMS experiments at the LHC in 2012.
- By now, it has been observed in all the main production modes and many decay channels.

After the Discovery Stage

Precision measurements

- Measurement of Higgs properties (mass, width, spin, parity, couplings, cross sections etc) → see <u>Chen Zhou</u>'s talk
- Searches for rare SM Higgs decays and BSM Higgs → contents of this talk
 - * Rare SM Higgs decays: H $\rightarrow \mu\mu$, cc, Z γ ...
 - $_{*}\,$ Heavy Higgs. Charged Higgs. Higgs \rightarrow light resonances. LFV ...
- Dark matter and unconventional searches involving Higgs → see
 <u>Lailin Xu's</u> talk
- * Searches for DiHiggs production \rightarrow see <u>Yanping Huang</u>'s talk

Full lists of <u>ATLAS</u> and <u>CMS</u> publications.

Higgs $\rightarrow \mu\mu$

Phys. Lett. B 812 (2021) 135980 JHEP01(2021)148

Both analyses include all four production modes with full Run 2 data

- Two muon final state gives good resolution but
 - * BR is very low (2.2*10⁻⁴)
 - * Large background from Z $\rightarrow \mu\mu$ (over all S/B ~10⁻³)
- Event categorization is important. MVA used to further separate signal and backgrounds.

ATLAS:

Observed (expected): 2.0 (1.7) σ Best-fit signal strength: 1.2 +- 0.6 CMS:

Observed (expected): 3.0 (2.5) σ ,

evidence

Best-fit signal strength: 1.19 +0.44 -0.42

$\mathsf{Higgs} \to \mathsf{cc}$

ATLAS-CONF-2021-021 JHEP 03 (2020) 131

Data

VV+other

W+bb/bc

W+udsg

Z+bb/b

× S+B uncertainty

Z+udsa

Both analyses

dedicated c-

tagging

VZ(Z→cc)

Single to

W+cc

W+b/c

Z+cc

Z+b/c

— VH(H→cc)x100

0.8

BDT output

QCD

VH(H \rightarrow cc), μ =41 VH(H \rightarrow bb)

have developed

- Direct test of the Higgs-charm coupling.
 - * BR ~2.9%. Not so low.

Data

VV Bkg

Z+hf

Z+m

Z+lf

tt + other

Uncertaint

 $VH(\rightarrow bb)$

- Background much more complicated.
- c-tagging is very challenging.

- Signal + Background

 $VZ(\rightarrow c\bar{c})$ (u=1.16)

 $VW(\rightarrow ca)$ (u=0.83)

Analyses done in VH mode with V decays leptonically 35.9 fb⁻¹ (13 TeV)

> Studio 10¹⁰

> > 10

10⁶

10

10

1.5 1 0.5

Obs / Exp

CMS

Resolved-jet

Signal Region

0.2

0.4

80

100

120

140

160

180

m_{cc} [GeV]

ATLAS Preliminary

2 lepton, 2 jets, 2 c-tags

vs = 13 TeV, 139 fb

SR, $p_{\perp}^{V} \ge 150 \text{ GeV}$

Ge/

15

Events

Data/Pred

60∃

30

20 10

0.5

60

Bing Li

0.6

Higgs $\rightarrow Z\gamma$

H

W

Η

- Include all four production modes and full Run 2 data
- **∗** BR = 1.5×10^{-3} . Analyses done in Z → ee/µµ ~7%.
- Events are further categorized to several signal regions based on lepton flavor, kinematics and BDT scores.

ATLAS:

Upper limit @95% CL: 3.6 *SM Best-fit signal strength: 2.0 +1.0 -0.9 CMS:

Upper limit @95% CL: 4.1 *SM Best-fit signal strength: 2.4 +- 0.9 W

 \widetilde{W}

Higgs $\rightarrow II\gamma$

Phys. Lett. B 819 (2021) 136412

- * ATLAS has a dedicate search at low m_{II} region below 30 GeV, with J/ ψ and Y regions excluded with full Run 2 data
- * Dominant by decay through γ^* .

- ee in the eeγ channel could be offten reconstructed as a/ single cluster in EM calorimeter → dedicated ee ID has been developed
- Events classified into different categories based on lepton flavor and event topologies
- ***** Observed (expected) significance: 3.2 (2.1) σ evidence
- Measured signal strength 1.5 +- 0.5, with cross section 8.7
 +2.8 -2.7 fb

Searches for High Mass Higgs

- High mass spin-O particles are predicted by several models with extensions to the Higgs sector.
- ATLAS and CMS have established searches for those high mass resonances in all diboson channels.
- Results are often also interpretated as other models as well, like a spin-2 particle.

Phys. Lett. B 822 (2021) 136651

High Mass Resonance Searches in yy Channel

- An update from ATLAS using full Run 2 data
 - Common event selection used for the spin-0 and spin-2 resonances searches
 - Functional decomposition method used to estimate spurious-signal

Major background from the SM yy process.

High Mass Resonance Searches in WW Channel

<u>JHEP 03 (2020) 034</u>

- CMS has a recent search in WW channel with 35.9fb⁻¹ data
- Include both the lvlv and lvqq (both resolved and boosted) final states.
- Events are categorized in ggF and VBF categories
- * Interferences between X and SM are considered for large width signals
 - * X-h(125) and X-continuum interferences have opposite signs

CMS Simulation

- Data

WW

Nonpromp

Background uncertainty

- m_v=1500 GeV

GeV

50

Events

10⁴

10⁵ 2l2v

DF 0-jet

35.9 fb⁻¹ (13 TeV) gg→X→2l2v, m_x=700 GeV nterference X-h(125) nterference X-Bkg nterference X-(Bkg+h(125)

35.9 fb⁻¹ (13 TeV)

tW and tt

- m_v=400 GeV

DY

1500

m_{reco} [GeV]

35.9 fb⁻¹ (13 TeV)

tW and tt

Nonprompt

W(lv) + jets

- m_x = 800 GeV

 $(p_{\ell\ell} + p_{\rm T}^{\rm miss})^2 - (\vec{p}_{\ell\ell} + \vec{p}_{\rm T}^{\rm miss})$

Multiboso

mww [GeV]

Eur. Phys. J. C 81 (2021) 332 High Mass Resonance Searches in ZZ Channel

- ATLAS has published searches in ZZ channel in the 4I and IIvv final state with full Run 2 data
- Two channels are sensitive to different mass regions
- Events are categorized in ggF and VBF channels
- Interferences are considered for large width signals
- DNN used in 4I channel for categorization

llvv more sensitive in high mass region

JHEP11(2021)057

Search for Heavy Higgs to h(125) and h_s

- CMS has a very recent publication (Nov. 9) searching for H → h + h_s with full Run 2 data. (H: heavy Higgs. h: the SM 125 GeV Higgs. h_s: another Higgs boson.)
- Searches performed in h→тт, h_s→bb final state. At least one т deca hadronically.
- Events sorted into 5 categories based on multiclass NN outputs (1 signal node, 4 background nodes), for each data-taking year and each final state (45 in total).

Signa

Bing Li

Using Higgs to Search for Light Resonances

- Current constraint from ATLAS and CMS on the H → invisible/undetected decays are at 20 to 30% level (partial data), allow large phase space to search for H → BSM light states.
- Both ATLAS and CMS have searched those light resonances in many different channels.

Searches for $H \rightarrow aa$

- A recent update in bbµµ channel from ATLAS
- Full Run 2 data

arXiv:2110.00313

CMS-PAS-HIG-21-003

- Kinematic likelihood (KL) fit is performed exploiting equal invariant masses of bb and μμ
- m_{µµ} used to constrain m_{bb}

- * A recent update in yyyy channel from CMS
- Full Run 2 data
- Primary vertex selected based on BDT (instead of sum pT squared) → 3% improvement of the resolution of the invariant mass
- Event mixing used for background estimates

Search for $H \rightarrow ZX/XX$ in 4I Final State

- Recent update from CMS with full Run 2 data. Two models considered
 - The hidden Abelian Higgs Model (HAHM). Interactions of the dark sector and SM * particles through the kinetic-mixing or Higgs-mixing
 - The axion-like particles (ALPs) (formulated as an EFT model) \rightarrow particularly motivated * by the observed muon magnetic moment anomaly **Relevant Wilson coefficients**
- Different dilepton mass requirements in ZX and XX selections

November 26, 2021

Bing Li

 C_{7H}/Λ : H \rightarrow Za

 C_{aH}/Λ^2 : H \rightarrow aa

15

Searches for Charged Higgs

- Both ATLAS and CMS have a wide range of searches for charged Higgs.
- * Charged Higgs to fermions: below top mass and above top mass
- Charged Higgs to bosons

JHEP 06 (2021) 145

Charged Higgs to tb

- Recent results from ATLAS searching for charged Higgs to tb, in the top and b associated production with full Run 2 data
- * One electron/muon is required.
- * Events split into different regions based on number of jets and b-tagged jets
- Reweighting factors derived from #bjet = 2 regions applied to high #bjet signal regions
- MVA used to further separate signal and background. NN output as final discriminator

Charged Higgs to cs/cb

- Targeting at lower mass region below top mass *
- Using ttbar events and charged Higgs from top decay, which then decays to light quarks *
- The other top decays leptonically *

November 26, 2021

CMS searched in cs channel with 35.9 fb⁻¹ data Results obtained by fitting over m_{ii} after kinematic-fit ATLAS recently reported results in cb channel with full Run 2 data NN used to further separate signal and background

 $\rightarrow cb$

18

JHEP 06 (2021) 146 Eur. Phys. J. C 81 (2021) 723 Charged Higgs to WZ/WW

- ATLAS and CMS also searched charged Higgs (H⁺, H⁺⁺) in the WW/WZ channel
- Recent updates from ATLAS focusing on the pair production, and CMS focusing on the single production with full Run 2 data

W⁺W⁺ SR WZ SR CMS search targets at VBF mode ATLAS Non-Prompt leptor tłw,tłZ by requiring two tag jets with large **ATLAS** search t(W)Z,ttH,ttVV,3t,4t,Vγ √s=13 TeV 139 fb 10 Data/SM invariant mass and rapidity performed in multilepton final state separation Data/SM 137 fb⁻¹ (13 TeV) 137 fb⁻¹ (13 TeV) [dd] (Z[±]W [dd] ([±]W[±]W CMS CMS Observed Observed **4**l 31 4*l* $m_{rr^{\pm\pm}} = 200 \,\text{GeV}$ $m_{H^{\pm\pm}} = 300 \,\text{GeV}$ $m_{II}^{\pm\pm} = 400 \,\text{GeV}$ $m_{H^{\pm\pm}} = 500 \,\text{GeV}$ 68% expected 68% expected ---- 95% expected --- 95% expected ···· σ_{GM}⁺⁺⁺, s_{_1} = 1 ····σ^{H⁺}_{GM}, s_{..} = 1 $\rightarrow W^{\pm} W^{\pm} W^{\mp} Z$ [fb] 10⁻ ATLAS ATLAS $B(H^{+})$ $\sigma_{\rm VBF}^{\rm H^+} \times B({\rm H^{++}})$ 100ŀ √s=13 TeV 139 fb vs=13 TeV 139 fb d 95% CL upper 95% Cl upper limi ted limit (±2o xpected limit (+2a × 110-10-10-40 ory (NLO OCD 30 60 σ x ℬ (pp → H^{#+}H[∓] 20F 40 10F 20 300 350 400 450 500 350 400 450 500 550 200 250 550 600 3000 1000 2000 3000 1000 2000 $m_{H^{\pm\pm}}$ [GeV] $m_{H^{\pm\pm}}$ [GeV] m_{⊣⁺} [GeV] m_{H⁺⁺} [GeV]

Pair production

 W^{+*}

 γ^*/Z^*

Š

σ x ℬ (pp → H[#]H[†]

137 fb⁻¹ (13 TeV)

Bkg. unc.

Nonprompt

W[±]W WZ

ZZ

Other bkg

— H^{**}(500)→W^{*}W^{*}, s_⊔=1

— H⁺(500)→W⁺Z, s =1

Bins corresponding

to 2D distribution in

Single production in VBF mode

/ bir

10¹¹

10⁸

{10⁵} [[m_{ii} x m_T]

Charged Higgs to WA

ATLAS-CONF-2021-047

- ATLAS reports search for H⁺→WA (A is pseudoscalar) using ttbar events with full Run 2 data
- * Target at low mass region. The fermion channel can be strongly suppressed.
- * Events required to have one electron and two muons. Two muons from A decay.

Searches for LFV using Higgs

Phys. Rev. D 104 (2021) 032013

- Recent results from CMS using full Run 2 data, searching for lepton-flavor violation (LFV) in Higgs decays.
- Analysis performed in μτ and eτ channels, where τ decays either hadronically, or leptonically (but not in ee or μμ final state)
- * BDT trained in each channel

Observed (expected) upper limits $\mathcal{B}(H \rightarrow \mu \tau) < 0.15(0.15)\%$

 $\mathcal{B}(H \to e\tau) < 0.22(0.16)\%$

Uncertainty dominant by

- ✓ Bin-by-bin uncertainty
- ✓ Mis-identified lepton kinematic distributions

Summary

- Both ATLAS and CMS have established wide range of searches using the discovered 125 GeV Higgs boson
 - * Continue looking for SM Higgs in the rare decay modes
 - * Looking for BSM Higgs
 - * Using SM Higgs to search for BSM particles
 - * ...
- * Still several Run 2 analyses ongoing with full luminosity
- Run 3 is coming. Stay tuned.

backup